Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 395005

(http://iopscience.iop.org/0953-8984/20/39/395005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.92.9.55
The article was downloaded on 27/08/2010 at 17:24

Please note that terms and conditions apply.
Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing

Michael Nosonovsky\(^1\) and Bharat Bhushan\(^2,3\)

\(^1\) Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA
\(^2\) Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB\(^2\)), The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142, USA

E-mail: bhushan.2@osu.edu

Received 17 July 2008
Published 4 September 2008
Online at stacks.iop.org/JPhysCM/20/395005

Abstract

The concept of superhydrophobicity was introduced in the 1990s as a result of the investigation of the microstructure of extremely water-repellent plant leaves. Since that time, artificial superhydrophobic surfaces have been developed and implemented, stimulated by advances in nanotechnology, and giving one of the most successful examples of a bio-inspired technology transferred into engineering applications. Superhydrophobicity is usually defined as the ability of a surface to have (i) a very high water contact angle (CA) and (ii) low CA hysteresis. Here we argue that the ability of a water droplet to bounce off a surface constitutes a third property that is crucial for applications. Furthermore, this property is naturally related to the first two properties, since the energy barriers separating the ‘sticky’ and ‘non-sticky’ states needed for bouncing droplets have the same origin as those needed for high CA and for low CA hysteresis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Biomimetic surfaces and materials attract the attention of scientists and engineers due to their unusual properties. Mechanical properties of many biological materials exceed those of engineered materials, while their production by living organisms and plants does not require high temperatures and pressures (Fratzl 2007). This is achieved by a design methodology that is radically different from conventional engineering design. Biological materials and surfaces are created by an iterative process leading to hierarchical organization, rather than on the basis of end-process specifications. This allows biological materials to adjust to changing conditions, and gives a potential for self-repair and cross-scale interactions that can deal with processes at different scale lengths. Scientists and engineers try to mimic natural materials and surfaces utilizing the so-called biomimetic approach.

One of the most successful examples of biomimetic surfaces involves the lotus effect, including roughness-induced superhydrophobicity and self-cleaning. Leaves of the lotus (\textit{Nelumbo nucifera}) plant are known to be extremely water repellent due to their wax coating and surface roughness. In nature, water-repellency is found, besides in plants, in insects and bird feathers. It has a certain biological function, providing fitness to the environment of plants and organism and protecting them from contamination and pathogens, such as spores and conidia of pathogenic microorganisms, and infections (Barthlott and Neinhuis 1997, Wagner et al 2003). Recent advances in surface micro/nanopatterning have led to numerous attempts to create roughness-induced superhydrophobic surfaces for technical applications that require low adhesion, in particular, micro/nanodevices (Nosonovsky and Bhushan 2008a). Several lotus effect products have become commercially available on the market (Bhushan et al 2008). Both experimental studies of superhydrophobicity and theoretical issues such as adequate surface roughness characterization became a topic of active investigation (Nosonovsky and Bhushan 2008b, 2008d). New areas of applications have been suggested, such as energy conversion and conservation (Nosonovsky and...
Superhydrophobicity is usually defined as the ability to have the static contact angle (CA) with water greater than 150°. In addition, it is recognized that a superhydrophobic surface should have low CA hysteresis, or the difference between the advancing CA (when water is added or the water front advances) and receding CA (when water is removed or the water front recedes). The CA is a measure of adhesion between water and the solid surface, so the greater the contact angle, the lower the adhesion. The CA hysteresis, on the other hand, is a measure of energy dissipation during the wetting/dewetting cycle, or during the flow of a droplet along the solid surface. Interactions in the bulk volume of a droplet, at the solid–liquid contact surface, and at the triple line (solid–liquid–vapor contact line) affect the dissipation. While the volume interactions due to viscosity can be eliminated in the quasi-static limit of a very slow motion, the surface and line interactions remain even in the case of a low velocity motion.

There is another wetting characteristic, in addition to a high CA and low CA hysteresis, which is of practical importance for water-repellency. This is the behavior of a droplet impacting a surface with a certain velocity. In some cases it can be bounced off a superhydrophobic surface in an almost elastic manner (Quéré 2005, Bartolo et al. 2006). The kinetic energy of the droplet is stored in the surface deformation during the impact. A deformed droplet has a higher surface area and thus higher surface free energy. Therefore, during the impact when the droplet is deformed, it can accommodate the kinetic energy. It was suggested that the effect might be of practical interest for agriculture, in particular, for treating leaves with pesticides (Quéré 2005). Since the leaf is likely to repel the droplet, it will not be treated; in addition, the scattering of the droplets contaminates the soil. If small amounts of a polymer soluble in water (such as polyoxyethylene) are added to water (Bergeron et al. 2000), the bulk viscosity of water remains the same; however, the so-called elongation viscosity (resistance of the liquid to large extensions) is high. Droplets of such a mixture do not bounce, and it has been used as an agricultural spray (Quéré 2005). On the other hand, the bouncing droplets are useful for waterproof fabrics or concrete that should preserve their dryness under rain.

The ability of a surface to bounce off droplets constitutes the third property of a superhydrophobic surface, in addition to high CA and low CA hysteresis, that is important for both biological and technical applications. However, this third property has received relatively little attention. In this paper, we quantify the bouncing ability of a surface and relate it to the surface roughness using theoretical and experimental considerations.

2. Theoretical background

2.1. Wenzel and Cassie states

When a liquid front propagates along a solid surface for a small distance \(\delta x \) (figure 1(a)) with the CA of \(\theta_0 \), the change of surface free energy is given by

\[
\delta E = \delta x \gamma_{LV} \cos \theta_0 + \delta x (\gamma_{SL} - \gamma_{SV}),
\]

where \(\gamma_{SL} \), \(\gamma_{SV} \), and \(\gamma_{LV} \) are the solid–liquid, solid–vapor, and liquid–vapor interface energies (Israelachvili 1992). Setting \(\delta E = 0 \) yields the Young equation

\[
\gamma_{LV} \cos \theta_0 = W
\]

where \(W = \gamma_{SL} - \gamma_{SV} \) is the work of adhesion.

For a heterogeneous rough surface composed of patches with different surface roughnesses \(R_n \) and energies \(w_n \), the change of energy is given by

\[
\delta E = \delta x \gamma_{LV} \cos \theta + \delta x W_{ave}
\]

\[
W_{ave} = \sum_n f_n R_n w_n
\]
Figure 2. (a) Cylindrical flat-top columns on a micropatterned surface, and (b) energy barriers for the Cassie and Wenzel states. The energy is shown as a function of the height of the interface, h. The barrier is proportional to the column height H. The ideal case (solid line) involves an abrupt change of energy as the bottom of the surface is reached; however, a more realistic case (dashed line) has the offset b due to imperfections of the solid and liquid surfaces (e.g. surface waves).

Figure 2. (a) Cylindrical flat-top columns on a micropatterned surface, and (b) energy barriers for the Cassie and Wenzel states. The energy is shown as a function of the height of the interface, h. The barrier is proportional to the column height H. The ideal case (solid line) involves an abrupt change of energy as the bottom of the surface is reached; however, a more realistic case (dashed line) has the offset b due to imperfections of the solid and liquid surfaces (e.g. surface waves).
For a short pitch the net energy of the Cassie state is lower than that of the Wenzel state, whereas for larger values of the pitch the energy of the Wenzel state is lower (figure 2(b)). However, due to the energy barriers, a metastable Cassie state with a higher energy than the Wenzel state may be found.

2.2. Impact of a droplet on a superhydrophobic surface

The energy barrier of the Cassie–Wenzel transition can be estimated as the kinetic energy of the droplet. The kinetic energy of a droplet of radius R, mass m, and density ρ with velocity V is given by

$$E_{\text{kin}} = \frac{(4/3)\pi \rho R^3 V^2}{2} \tag{9}$$

while the free surface energy is given by

$$E_{\text{surf}} = 4\pi R^2 \gamma_{LV}. \tag{10}$$

In order for the surface deformation to accommodate the kinetic energy, the latter should be of the same order of magnitude as the former. For a water droplet ($\gamma_{LV} = 0.072 \text{ N m}^{-1}$, $\rho = 1000 \text{ kg m}^{-2}$), the droplet height is 1 mm, the corresponding impact velocity is $V = 0.66 \text{ m s}^{-1}$. The ratio of the kinetic and surface energies (or inertial to the capillary forces) is also characterized by the nondimensional Weber number

$$We = \frac{\rho RV^2}{\gamma_{LV}}. \tag{11}$$

Small We corresponds to low kinetic energy in comparison with the free surface energy. If the impact velocity is high (high We), implying that impact time is short, a thin film of compressed air could form at the surface, which facilitates bouncing. On the other hand, if the impact velocity (and We) is too high, the surface tension cannot accommodate the kinetic energy, or the Cassie–Wenzel transition can occur and the droplet sticks to the surface.

3. Analysis of experimental data

Jung and Bhushan (2008a, 2008b) studied two series of patterned Si surfaces, covered with a monolayer of hydrophobic tetrahydroperfluorocyclohexylclosilane (CA with a nominally flat surface, $\theta_0 = 109^\circ$, advancing and receding CA $\theta_{adv0} = 116^\circ$ and $\theta_{rec0} = 82^\circ$), formed by flat-top cylindrical pillars. Series 1 had pillars with the diameter $D = 5 \mu\text{m}$, height $H = 10 \mu\text{m}$ and pitch values $P = (7, 7.5, 10, 12.5, 25, 37.5, 45, 60, \text{ and } 75) \mu\text{m}$, while series 2 had $D = 14 \mu\text{m}$, $H = 30 \mu\text{m}$ and $P = (21, 23, 26, 35, 70, 105, 126, 168, \text{ and } 210) \mu\text{m}$. The series were designed in this manner to isolate the effect of the pitch, pitch-to-height and pitch-to-diameter ratios. The contact angle and contact angle hysteresis of millimeter-sized water droplets upon the samples were measured. In addition, the contact angle and the Wenzel–Cassie transition during evaporation of microdroplets were studied (figure 3(a)).

It was found that for small P the droplets were in the Cassie state sitting on top of the pillars, whereas with increasing P the transition to the Wenzel state occurred. The transition occurs at values of the pitch much greater than the intersection of the energy lines for the two states. Therefore, the droplet was in a metastable Cassie state, separated by an energy barrier from the Wenzel state (corresponding to lower energy).

For evaporating droplets, the Cassie–Wenzel transition occurred when the droplet radius decreased below a certain critical value. The droplet radius, R, at the Cassie–Wenzel transition was found to be proportional to P/D (or P/H, since the height of the columns was proportional to their diameter) (figure 3(b)). On the other hand, the transition occurs as the vibrational energy of the droplet, E_{vib}, exceeds the energy barrier associated with the transition. The vibrational energy of the droplet (Johnson and Dettre 1964, Li and Amirfazli 2006, Bormashenko et al 2008) is the energy associated with the vibration of the droplet due to surface waves, thermal vibration, etc. Assuming $E_{\text{vib}} = \text{const}$, the proportionality of P/D and R suggests that the barrier ΔE given by equation (8) is proportional to the RD/P or (RH/P). This is indeed true, since the area under the droplet $A_0 = \pi (R \sin \theta)^2$. Substituting $\sin^2 \theta = 0.1$, $\cos \theta_0 = \cos 109^\circ = -0.33$, $\gamma_{LV} = 0.072 \text{ J m}^{-2}$ in equation (8) and taking the observed value $RD/P = 50 \mu\text{m}$ yields an estimated value of the vibrational energy $E_{\text{vib}} = \Delta E = 1.2 \times 10^{-10} \text{ J}$.

Figure 3. (a) Receding CA for macrodroplets (squares for the first and diamonds for the second series) and for evaporating microdroplets (blue/filled) and the theoretical values for the Cassie and Wenzel states. (b) The droplet radius R at which the transition occurs is linearly proportional to P/D. This is because the area A_0 in equation (8) is proportional to R^2. The fit (solid line) is shown for $RD/P = 50 \mu\text{m}$.

Figure 4. Bouncing droplets: (a) snapshots of a droplet with $R = 1$ mm hitting a micropatterned surface at two different velocities, showing sticking and bouncing (Jung and Bhushan 2008b), and (b) dependence of the kinetic energy of a droplet that provides the regime transition upon the energy barrier calculated from equation (8). The fit (solid line) is shown for $A_0 = 0.12 \text{ mm}^2$.

Jung and Bhushan (2008b) also investigated the impact of water droplets with 5 μl volume (about 1 mm radius) upon the same series of surfaces. It was found that droplets impacting the surface with low velocity bounced off the surface, whereas those having high impact velocity stuck to the surface (figure 4(a)). Sticking was associated with being in the Wenzel state with a large solid–liquid contact area, while the droplets that bounced off the surface were in the Cassie state with an air pocket under them. Thus the energy barrier of the Cassie–Wenzel transition can be estimated as the kinetic energy of the droplets. Figure 4(b) shows the dependence of the kinetic energy corresponding to the transition, E_{kin}, on $\Delta E/(A_0 \cos \theta_0)$ calculated from equation (8). It is observed that the dependence is close to linear, however, the series of smaller pillars has larger energies of transition. The value of A_0 is in the range $0.11 \text{ mm}^2 < A_0 < 0.18 \text{ mm}^2$ for series 1 and $0.05 \text{ mm}^2 < A_0 < 0.11 \text{ mm}^2$ for series 2, which is of the same order as the actual area under the droplet.

These results suggest that the energy barrier for the Cassie–Wenzel transition is given by equation (8) and is proportional to the area under the droplet. For droplets sitting on the surface or evaporating, the transition takes place when the size of the barrier decreases to the value of the vibrational energy, approximately $E_{\text{vib}} = 10^{-10} \text{ J}$, which was estimated from the energy barrier. This may happen because the size of the droplet is decreased or because the pitch between the pillars that cover the surface is increased. A different way to overcome the barrier is to hit the surface with a droplet with a certain kinetic energy.

The vibrational energy E_{vib} also plays a role in overcoming energy barriers that lead to CA hysteresis during liquid flow (Johnson and Dettre 1964). To estimate the effect...
of the energy barriers on CA hysteresis we assume, based on equation (1), that the difference between the advancing and receding CA is given by

$$ \cos \theta_{rec} - \cos \theta_{adv} = \Delta W / \gamma_{LV} $$

(12)

where ΔW corresponds to the energy barrier associated with the wetting–dewetting cycle. Assuming that this energy barrier is of the same order as the vibrational energy per contact area, $\Delta W = E_{vib}/A_0$, and taking $A_0 = 0.1 \text{ mm}^2$, we end up with $\Delta W = 10^{-3} \text{ J m}^{-2}$. For water ($\gamma_{LV} = 0.072 \text{ J m}^{-2}$), equation (12) leads to a realistic value of CA hysteresis on a superhydrophobic surface $\cos \theta_{rec} - \cos \theta_{adv} = 0.014$. This number provides an estimate for CA hysteresis in the limit of small energy barriers comparable with E_{vib}. The values that provide energy barriers due to so-called adhesion hysteresis and the density of the solid–liquid–vapor contact line that provides additional pinning are dependent upon the solid–liquid contact area. These values for a micropatterned surface were found to be between 0.0144 and 0.440 (Bhushan et al 2007), thus showing a good agreement with the value calculated based on E_{vib} as the lower limit. This indicates that the value of U is relevant for both the Cassie–Wenzel regime transition and CA hysteresis.

4. Conclusions

A superhydrophobic surface is characterized by three properties. First, it should have a high CA and thus low adhesion with a water droplet. Second, a water droplet should flow easily along the surface with small energy dissipation, and thus CA hysteresis should be low. The third property, which has received less attention, although it is important for many applications, is the ability to repel impacting droplets. This third property should be taken into consideration in the design of water-repellent surfaces. We have shown that these properties are related to energy barriers associated with the transition between the Cassie and Wenzel wetting states. Experimental data for droplets on patterned surfaces, evaporating microdroplets and droplets impacting the surface show that the nature of the energy barriers is the same in these situations. Namely, the height of the barriers is proportional to the area under the droplet, the height of the columns, their perimeter and their density. Proper understanding of the energy barriers is the key for studying water-repellent properties of biological surfaces and for designing sustainable superhydrophobic surfaces for microdevices, nano and biotechnology, energy and other applications.

References

Barthlott W and Neinhuis C 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces Planta 202 1–8

Bergeron V, Bonn D, Martin J Y and Vovelle L 2000 Controlling droplet deposition with polymer additives Nature 405 772–5

Blossey R 2003 Self-cleaning surfaces—virtual realities Nat. Mater. 2 301–6

Fratzl P 2007 Biomimetic materials research: what can we really learn from nature’s structural materials? J. R. Soc. Interface 4 637–42

Jung Y C and Bhushan B 2008a Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces J. Microsc. 229 127–40

Jung Y C and Bhushan B 2008b Dynamic effects of bouncing water droplets on superhydrophobic surfaces Langmuir 24 6262–9

Lafuma A and Quéré D 2003 Superhydrophobic states Nat. Mater. 2 457–60

Li W and Amirfazli A 2006 A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces J. Colloid Interface Sci. 292 195–201

Marmur A 2006 Underwater superhydrophobicity: theoretical feasibility Langmuir 22 1400–2

Nosonovsky M and Bhushan B 2008a Patterned non-adhesive surfaces: superhydrophobicity and wetting regime transitions Langmuir 24 1525–33

