
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgis19

Download by: [Universitätsbibliothek Bern], [Professor Ammann Niklaus] Date: 01 April 2017, At: 12:38

International Journal of Geographical Information
Systems

ISSN: 0269-3798 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/tgis19

The development of an interactive multi-scale GIS

Peter Van Oosterom & Vincent Schenkelaars

To cite this article: Peter Van Oosterom & Vincent Schenkelaars (1995) The development of
an interactive multi-scale GIS, International Journal of Geographical Information Systems, 9:5,
489-507, DOI: 10.1080/02693799508902052

To link to this article: http://dx.doi.org/10.1080/02693799508902052

Published online: 05 Feb 2007.

Submit your article to this journal

Article views: 65

View related articles

Citing articles: 25 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=tgis19
http://www.tandfonline.com/loi/tgis19
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02693799508902052
http://dx.doi.org/10.1080/02693799508902052
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis19&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis19&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02693799508902052
http://www.tandfonline.com/doi/mlt/10.1080/02693799508902052
http://www.tandfonline.com/doi/citedby/10.1080/02693799508902052#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/02693799508902052#tabModule

Research Article

The development of an interactive multi-scale GIST

PETER VAN OOSTEROM
TNO Physics and Electronics Laboratory, P.O. Box 96864,
2509 JG The Hague, The Netherlands

and VINCENT SCHENKELAARS
Faculty of Economics, Erasmus University, P.O. Box 1738.
3000 DR Rotterdam, The Netherlands

(Received 12 January 1994: accepted 12 May 1994)

Abstract. This paper presents the development of the first geographical
information system (GIS) that may be used to manipulate a single dataset at a very
large range of scales (different detail levels). The design of this multi-scale CIS is
fully integrated in the open DBMS Postgres and the open GIS CEO+ +. Besides
the system design, this paper will also give details of the implementation in the
Postgres DBMS environment of three generalization tools: I . the BLG-tree for line
and area simplification, 2. the Reactive-tree for selection based on importance and
location, and 3. the GAP-tree for solving problems when using the other two
structures for an area partitioning. Together with the geographical frontend, the
DBMS forms the flexible basis for the realization of powerful GIS applications. The
implementation has been successfully benchmarked with two large datasets: World
Darabank I1 and DLMS DFAD. The response times improve by one to two orders
of magnitude.

1. Introduction
The advent of geographical information systems (GISs) has changed the way people

use maps and geographic data. Modem information systems enable browsing through
geographical data sets by selecting (types of) objects and displaying them at different
scales. Just enlarging the objects when the user zooms in, however, results in a poor
map. Not only should the objects be enlarged, but they should be displayed with more
detail (because of the higher resolution), and less significant objects should be displayed
also.

A simple solution is to store the map at different scales (or level of details) but this
introduces redundancy with all its related drawbacks: possib~k inconsistency and
increased memory usage. If possible, therefore, the geographical data should be stored
in an integrated manner without redundancy, and supported by a special data structure
if required.

Detail levels are closely related to cartographic map generalization techniques.
The concept of on-the-jy map generalization is very different from the implemeritation
approaches described by Miiller er al . (1993): batch and inreracrive generalization.
The term batch generalization is used for the process in which a computer gets an input

t Parts of this paper are based on the paper The Design and Implementation of a Multi-Scale
GIs, which has been awarded the first prize at the EGIS'93 conference, Genoa (van Oosterom
& Schenkelaars, 1993).

0269-3798195 $1000 O 1995 Taylor & Francis Ltd.

490 P. van Oosterom and V. Schenkelaars

data set and returns an output data using algorithms, rules, or constraints (Lagrange
et al. 1993) without the intervention of humans.. This contrasts with interactive
generalization (amplified intelligence) in which the user interacts with the computer to
produce a generalized map.

On-the-fly map generalization does not produce a second data set, as this would
introduce redundant data. It tries to create a temporary generalization, e.g., to be
displayed on the screen, from one detailed geographic database. The quick responses,
required by the interactive users of a GIs, demand the application of specific data
structures, because otherwise the generalization would be too slow for reasonable data
sets. Besides being suited for map generalization, these data structures must also provide
spatial properties; e.g., it must be possible to find all objects within a specified region
efficiently. The name of these types of data structures is reactive data structures
(van Oosterom 1989, 1991, 1993).

The emphasis is put on the generalization techniques simpl$carion and selection.
The core of the reactive data structure is the 'Reactive-tree' (van Oosterom 1991).
a spatial index structure, that also manages the selection part of the generalization. The
simplification part of the process is supported by the 'Binary Line
Generalization-tree' (van Oosterom and van den Bos 1989). When using the
Reactive-tree and the BLG-tree for the generalization of an area partitioning, some
problems are encountered: gaps may be introduced by omitting small features and
mismatches may occur as a result of independent simplification of common boundaries.
These problems can be solved by additionally using the 'GAP-tree' (described here).

The Postgres DBMS (Stonebraker et a l . 1990) is extended with these reactive data
structures. Postgres. the successor of Ingres, is a research project directed by Michael
Stonebraker at the University of California, Berkeley. The characteristic new concepts
in Postgres are: support for complex objects, inheritance, user extensibility (with new
data types, operators and access methods), versions of relations, and support for rules.
In particular, the extensibility of Postgres is used for the implementation of the reactive
data structures. The Postgres reference manual (Postgres Research Group 1991)
contains all the information required to use the system.

Short descriptions of the principles of the BLG-tree and the Reactive-tree are given
in 9 2. The GAP-tree is described in 9 3. Postgres related implementation aspects are
described in $4. The implementation is tested and evaluated with two large data sets.
The performance improvements achieved by using the new reactive data structures can
be found in $ 5 . In the next section, an enhanced version of the Reactive-tree is
presented: the self-adjusting Reactive-tree. This new version is better suited to deal with
all kinds of object distributions among the detail levels. Finally, conclusions are given
in 9: 7 along with some indications of future work.

2. Reactive data structures
The term reactive data structure was introduced in the IDECAP project

(Projectgroep 1982, van den Bos et al. 1984). A reactive data structure is defined as
a geometric data structure with detail levels, intended to support the sessions of a user
working in an interactive mode. It enables the information system to react promptly
to user actions. This section gives a short description of two reactive data structures:
the BLG-tree and the Reactive-tree. (More details can be found in van Oosterom, 1991,
van Oosterom and van den Bos 1989). These structures are used for the cartographic
generalization techniques simplification and selection. There is still no support for the

Development of an interactive multiscale CIS

Figure I. Binary Line Generalization tree.

other generalization techniques: combination, symbolization, exaggeration, and
displacement (Shea and McMaster 1989).

2.1. BLC-tree
The Binary Line Generalization tree (BLG-tree) is a data structure used for line

generalization. Only important objects (represented by polylines) need to be displayed
on a small scale map, but without a generalization structure, these polylines are drawn - ~

with too much detail. A few well-known structure for supporting line generalization
are the Strip tree (Ballard 1981), the Arc tree (Giinther 1988). and the Multi-Scale Line
Tree (Jones and Abraham 1987). We use another data structure, the BLG-tree, because
i t is suited for polylines, continuous in detail level, and can be implemented with a
simple binary tree.

The algorithm to create a BLG-tree is based on the Douglas-Peucker algorithm
(Douglas and Peucker 1973). The first approximation for a polyline is a line between
the first point PI and the last point P,. These points are always necessary, otherwise
polygons which are composed of several polylines may not be closed when the
end-points are omitted. T o acquire the next approximation the point Pk with the greatest
distance with respect to the line segment (PI , P,) is selected. When the original polyline
is represented with these three points P I , Pk, and P,, a better approximation is normally
found. The point P k is used to split the polyline into two parts. The same procedure is
recursively applied to the polyline parts from PI to PI, and from PI. to P,,. Figure 1
illustrates the BLG-tree creation procedure and the resulting binary tree. The tree is
stored for each polyline in order to avoid the expensive execution of the
Douglas-Peucker algorithm each time a line generalization is needed.

2.2. Reactive-tree
The Reactive-tree is based on the R-tree (Guttman 1984). and has therefore similar

properties. The main differences with the R-tree are that the internal nodes of a
Reactive-tree can contain both tree entries and object entries, and the leaf nodes can
occur at higher tree levels. An object entry looks like: (MBR, imp-value, object-id)
where MRR is the minimal axes-parallel bounding rectangle, imp-value is a positive
integer indicating the importance level, and object-id contains a reference to the object.
The type of an object can be any geometric type; e.g., point, polyline, or polygon.

A basic notion is the importance of an object o, which is a function of its type
(or role), thematic attributes, and geometric size: I(o) = f(type, attributes, size).
For example, the size of an area object could be measured by its areaA(o) or perimeter
P(o). The weight of the type of the object depends on the application. For example, a

P. van Oosterom and V. Schenkelaars

Imponance

8 Importance

Figure 2. An example of Reactive-tree rectangles.

Figure 3. The Reactive-tree

city area may be more important than a grassland area in a given application. This could
be described with the following importance function (without using the thematic
attributes): I(o) = A(o)* WeightFactotfo).

A tree entry looks like (MBR, imp-value, child-pointer) where child-pointer
contains a reference to a subtree, MBR is the minimal axes-parallel bounding rectangle
of the whole subtree, while imp-value (I(o)) contains the importance of the child nodes
decremented by one. The Reactive-tree has the following properties which must be
maintained during insertion and deletion:

I. Each node is a physical disk page which contains between MI2 and M entries
unless it has no siblings (a pseudo-root).

2. All nodes on the same level contain entries with the same importance value.
More important entries are stored higher.

3. The root contains at least two entries unless it is also a leaf.

In nodes with both tree entries and object entries, the importance level of the object
entries is equal to the importance of the tree entries. The Insert and Delete algorithms
which maintain the properties of the Reactive-tree are described in van Oosterom
(1991). Figure 2 shows a scene with objects and MBRs. Figure 3 shows the resulting
Reactive-tree. Tree entries are marked with a circle.

The further one zooms in, the more tree levels must be addressed. Roughly stated,

Development of on interactive multiscale C I S 493

during map generation based on a selection from the Reactive-tree, one should try to
choose the required importance value such that a constant number of objects will be
selected. This means that if the required region is large only the more important objects
should be selected and if the required region is small, then the less important objects
must also be selected. The recursive Search algorithm starts by accessing the mot of
the tree. All the object entries in the node are checked for overlap with the search area,
if there is overlap, the object is returned. If the importance of the root is larger than the
required importance, all the tree entries are checked for overlap. In case overlap exists,
the corresponding subtree is descended. This recursive process is continued for
all subtrees, until an importance level equal to the required level is reached. Since all
objects of the same importance are on the same level, no further search is needed in
this case.

3. The GAP-tree
This section first describes an area partitioning as a map basis, and the problems

encountered when generalizing this type of map. In 8 3.2 the key to the solution is
introduced: the area partitioning hierarchy. The creation of the structure that supports
this hierarchy, the GAP-tree, is outlined in $3.3. Operations on the GAP-tree are
described in 5 3.4.

3.1. Problems with an area partitioning
An area partitioning (where each point in the two-dimensional domain belongs to

exactly one of the areas, there are no overlaps or gaps) is a very common structure used
as a basis for many maps; e.g. choropleths. Two problems occur when using the
techniques described in the previous section:

I. Simplification: Applying line generalization to the boundaries of the area
features might result in ugly maps because two neighboring areas features may
now have overlaps andlor gaps. A solution for this problem is to use a topological
data structure and apply line generalization to the common edges.

2. Selection: Leaving out an area will produce a map with a hole which is of course
unacceptable. No obvious solution exists for this problem.

A solution for the second (and also for the first) problem is presented. It is based on
a novel generalization approach called the Area Partitioning Hierarchy, which can be
implemented efficiently in a tree structure.

3.2. Area partitioning hierarchy
The gap introduced by leaving out one area feature must be filled again. The. best

results will be obtained by filling the gap with neighbouring features. This can be easy
in case of so-called 'islands': the gap will be filled with the surrounding area, but it may
be more difficult in other situations.

By taking both the spatial relationships and the importance (see 5 2.2) of an area
feature into account, an area partitioning hierarchy is created. This hierarchy is used -
to decide which area is removed and also which other area will fill the gap of the
removed feature.

3.3. Building the GAP-tree
The polygonal area partitioning is usually stored in a topological data structure with

nodes, edges, and faces. The process, described below, for producing the area

P. van Oosrerom and V. Schenkelaars

right
2-cell 2-cell

Figure 4. The topological data structure.

partitioning hierarchy assumes such a topological data structure (Boudriault 1987,
DGIWG 1992, Molenaar 1989, Peucker and Chrisman 1975); see figure 4. The
topological elements have the following attributes and relationships:

- a node (or 0-cell) contains its point and a list of references to edges sorted on
the angle;

- an edge (or I-cell) contains its polyline, length and references to the left and
to the right face;

- a face (or 2-cell) contains its WeightFacror, area, and a list of sorted and signed
references to edges forming the outer boundary and possibly inner boundaries;

Note that this topological data structure contains some redundant information because
this enables more efficient processing later on. After the topological data structure has
been created, the following steps will produce a structure, called the Generalized Area
Partitioning (GAP)-tree, which stores the required hierarchy:

1 . For each face in the toplogical data structure an unconnected empty node in the
GAP-tree is created;

2. Remove the least important area feature a , i.e., with the lowest importance I(a),
from the topological data structure;

3. Use a topological data structure to find the neighbours of a and determine for
every neighbour b the length of the common boundary L(a, b)

4. Fill the gap by selecting the neighbour b with the highest value of the collapse
function: Collapse (a, b) = f (L(a, b), CompatibleTypes(a, b), WeightFactor(b)).
The function CompatibleTypes(a, b) determines how close the two feature types
of a and b are in the feature classification hierarchy associated with the data set
(AdV 1988, DGIWG 1992, DMA 1986). For example, the feature types 'tundra'
and 'trees' are closer together than feature types 'tundra' and 'industry' in the
Digital Landmass Digital Feature Analysis Data (DLMS DFAD, DGIWG 1992);

5. Store the polygon and other attributes of face a in its node in the GAP-tree and
make a link in the three from parent b to child a;

6. Adjust the topological data structure, importance value I(b), and the length of
common boundaries L(b, c) for every neighbour c of the adjusted face b to the
new collapsed situation.

Repeat the described steps 2-6 until all features in the topological data structure are at
the required importance level (for a certain display operation). This procedure is quite
expensive and probably too slow for large data sets to be performed on-the-fly.
Therefore, the hierarchy is pre-computed and stored in the GAP-tree. The 2-6 steps are

Development of an interactive mulriscale GIS

Figure 5. The scene and the associated GAP-tree.

now repeated until only one huge area feature is left, because we cannot know what
the required importance level will be during the interactive use in a GIs. The last area
feature will form the root of the GAP-tree. Further, a priority queue may be used to find
out efficiently which face a has the lowest importance value [(a) in step 2 of the
procedure.

Figure 5 (a) shows a scene with a land-use map in the form of an area partitioning.
In figure 5(b) the GAP-tree, as computed by the procedure described above, is
displayed. Note that a few attributes are shown in figure 5(b): polygon, area, and
perimeter of the final feature in the GAP-tree. The polygon is a real self-contained
polygon with coordinates. and it is not a list of references. It is important to realize
that this data structure is not redundant with respect to storing the common
boundaries between area features. The only exception to this is the situation where
a child has a common edge with another child or its parent; see the thick edges in
figure 5 (a).

More statistical information has to be obtained on how frequently this situation
occurs in real data sets. Islands may be relatively uncommon for many area
partitionings, particularly statistical reporting zones and political boundaries. A solution
for the 'common edges' problem is to store references to these edges, similar to a
topological data structure. Care must be taken in order to assure that these edges are
also in the right place in the GAP-tree. Because the tree is traversed (and displayed)
in a breadth-first order, the best location for a shared edge is together with the area
feature that is on the highest level in the GAP-tree. The child that shares this edge,
contains a reference to it. The objects retrieved from the database are buffered (in main
memory) and displayed, so references can be traced efficiently. In the case of a common
edge between two objects at the same level, the edge is stored in the first one and
the second one contains the reference to this edge. A final problem is illustrated in
figure 6 where the neighbour of feature F2 is feature F1. Feature FI, which contains
edge El 2, falls outside the query region. Therefore, the common edge El 2 is not in the
buffer. However, the missing edge is not really necessary as it is also completely outside
the query region. The area feature F2 can be clipped against the query region.

As can be seen in figure 5 (b) the GAP-tree is a multi-way tree and not a binary tree.
Some visual results of the on-the-fly generalization techniques with real data are
displayed in 8 5. The additional operations using the GAP-tree, not necessarily related
to visualization. are described in the next subsection.

P. van Oosferom and V. Schenkelaars

Figure 6. Missing edges with the query region overlap selection.

3.4. Operafions on the GAP-tree
As a feature in the GAP-tree contains the total generalized area, the actual area A

of the polygon has to be corrected for the area of its children with the following formula:

A(actua1) = A(parent) - 2 A(chi1d)
child E children

It is important to realize that only one level down the tree has to be visited for this
operation and not the whole subtree below the parent node. In a similar way the
perimeter P of a polygon can be computed, the only difference bring that the perimeter
of the children have to be added to the perimeter of the parent. This results in the
formula:

P(actua1) = P(paren1) + P(chi1d)
chiid E children

This formula for the perimeter only works if the children have no edges in common
with each other or with the parent. Often the boundaries of the areas in the GAP-tree
are indeed non-redundant. This also enables the use of the BLG-tree for simplification
of important area features in small-scale maps without producing overlaps or gaps
between features. The use of the BLG-tree has a very positive effect on the response
times for small-scale maps (see 9 5).

4. Postgres Implementation
In this section we indicate how the implementations of the reactive data structures

are linked to the Postgres DBMS. There is a big implementation difference between
the BLG-tree and the Reactive-tree, because the BLG-tree is implemented as a part of
an abstract data type, while the Reactive-tree is a new access method. The latter is far
more difficult to add, because an access method interacts with many (undocumented)
parts of the Postgres DBMS. The reader will be spared the C-code details of the
implementation, which can be found in Schenkelaars (1992). The implementations of
the BLG-tree, Reactive-tree. and GAP-tree are described in 994.1, 4.2, and 4.3
respectively. An example using these structures is given in 94.4.

Development of an interactive multiscale CIS 497

4.1. BLG-tree
The BLG-tree is integrated in the POLYLINEZ data type (Vijlbrief and van

Oosterom 1992). In Postgres, each data type should be provided with at least two
functions: an input function which converts an external ASCII representation into an
internal representation, and an output function which translates the internal representa-
tion into an ASCII string. The POLYLINEZ input function is modified to create a
BLG-tree and to store this tree along with the defining points of the original line.

The process of retrieving a generalized polyline from a BLG-tree is less complex
than the creation process. The output function Blg2Pln is provided to retrieve a
generalized polyline. It is called with two parameters: the original polyline, and the
maximum distance (error) between the original polyline and the generalized polyline.
Note that in this manner, the database does not return unnecessary points to the
applications, which can save a substantial amount of data transfer time. For polygons
a similar implementation is created: the POLYGON2 data type with the output function
BlgZPgn.

4.2. Reactive-tree
In order to use the Reactive-tree as a new access method, some meta information

must be inserted in the following Postgres system tables: pg-am, pgqroc,
pg-operator, pg-opclass, pg-amop, and pgiamproc. An access method has to be
registered in the table pg-am. This is done with the following query:

append pg...am(
amname = "ReactiveTree", amowner = "6",
amstrategies = 8, amsupport = 6,
amgettuple = "reactgettuple", aminsert = "reactinsert",
amdelete = "reactdelete", ambeginscan = "reactbeginscan",
amrescan = "reactrescan", amendscan = "reactendscan*',
ammarkpos = "reactmarkpos',', amrestrpos = "reactrestrpos",
ambuild = "reactbuild")

The first attribute contains the name of the new access 'method (ReactiveTree).
The second attribute indicates the user-id of the owner of the access method; in this case
user-id number 6. In Postgres an access method is based on:

1. A set of (Boolean) access method userfunctions to indicate the relative position
of two objects; in case of a two-dimensional spatial index this set contains 8
(amstrategies) elements. For the Reactive-tree these are called: LeftZReaRea,
OverleftZReaRea, OverlapZReaRea, RightZReaRea, OverrgtZReaRea,
EqualZReaRea, ContainZReaRea, and ContByZReaRea. For each of these
functions an operator symbol has to be defined (in the pg-operator table), which
can be manipulated by the query optimizer. These will be called the access
method user operators and are numbered according to the following sequence
< C , &<,&&, &>, > >, -=, -,and @.

2. A set of access merhodprocedures; in case of the Reactive-tree 6 (amsupport)
functions are needed and numbered in the order: UnionZReaRea,
InterZReaRea, SizeZRea, IsObjectZRea, MakeTreeObjZRea, ReactZlmp.

3. A fixed set of access method manipulation functions:

- amgettuple contains the name of the function which performs an index
search: reactgettuple;

P. van Oosterom and V. Schenkelaars

- aminsert contains the function which inserts a tuple in the index:
reactinsert;

- amdelete contains a function which deletes a tuple from the index:
reactdelete;

- ambeginscan contains a function which initializes an index scan:
reactbeginscan;

- amrescan contains a function which rescans a previous started scan:
reactrescan;

- amendscan contains a function which ends an index scan: reactendscan:
- ammarkpos contains a function which marks a position in a scan:

reactmarkpos;
- amrestrpos contains a function which releases a marked position in the scan:

reactrestrpos:
- ambuild contains a function which initializes the index and add all tuples

that are in the relation: reactbuild.

All these functions (access method user functions, access method procedures, and
access method manipulation functions) must be registered in the p g p r o c table.
This is done, for example for the reactinsert, as follows:

define function reactbuild (language = "c", returntype = int4)
as "$REACTHOME/reactree.o"

One problem arises: the functions often need arguments of types that do not exist
as standard Postgres types. For example reactinsert needs a Relation type. Therefore
no arguments, and an int4 as return value, are defined in the function definition. Postgres
does no type checking in this case. Only the number of arguments the function expects,
has to be provided:

define function reactinsert (language = "c", returntype = int4)
as "$REACTHOME/reacttree.o"

replace p g p r o c (pronargs = 2) where pgproc.proname = "reactinsert"

For each data type the user wants to access with the defined access method, an "operator
class" has to be defined (in the pg-opclass table). An operator class collects both access
method procedures (registered in the pg-amproc table) and access method operators
(registered in pg-amop table).

In order to make sensible use of the Reactive-tree, a data type is required that
possesses both a geometric attribute and an importance level. For this purpose a new
type was created: REACTIVEZ, which contains a bounding box and an importance
level.

The following sequence of Postquel queries shows the registration of the operator
class Reactive2-op in the pg-opclass table, and examples of adding an operator
respectively a procedure to the p c a m o p table respectively to the pg-amproc table.

append pgopclass (opcname = "Reactive2-ops")

append pg-amop(
amopid = am.oid, amopclaid = opc.oid,
amopopr = opr.oid, amopstrategy = "19'::int2, ...)
from opc in pgopclass, opr in pgoperator ,

opt in pgtype , am in p g a m

Development of an interactive multiscale GIS 499

where opr.oprname = " < <" and opt.typname = "REACTIVE2" and
opt.oid = opr.oprright and opt.oid = opr.oprleft and
amamname = "ReactiveTree" and opc.opcname = "Reactive2-ops"

append pg_amproc(
amid = am.oid, amopclaid = opc.oid,
amproc = proc.oid, amprocnum = "lY'::int2)
from opc in pgopclass, proc in pgproc,

am in p g a m
where am.amname = "ReactiveTree" and

opc.opcname = "Reactive2-ops" and proc.proname = "Union2ReaRea9'

4.3. GAP-tree
A possible implementation difficulty of the GAP-tree is the fact that it is a multi-way

tree and not a binary tree. Therefore, a simple linear version has been derived from the
GAP-tree by putting the features in a list based on their level in the tree. The top level
feature in the tree will be the first element of this list, the second level features will
follow, and so on. For example the linear list for the scene in figure 5 is: GRASS,
FOREST, CORNFIELD. TOWN, LAKE, CENTER, PARK, INDUSTRY, ISLAND,
POND. When the polygons are displayed in this order, a good map can be produced
without the GAP-tree. However, it is very difficult to compute the actual area without
the GAP-tree.

As mentioned before, the on-the-fly generalization has been developed within the
Postgres DBMS environment. Postgres is an extensible relational system. A relation
does not guarantee any order among its elements. A good display can be obtained by
sorting on the sequence number in the list or on the area of the feature.

4.4. Example
In this 5 an example of the use of the Reactive-tree, BLG-tree, and GAP-tree will

be given. The Reactive-tree access method can be defined before any tuples are added
to the relation, or one can first insert all tuples and decide later that a Reactive-tree is
needed. The following two Postquel queries show the definition of the user hble
AreaFeature and the definition of a Reactive-tree index on this table using the
Reactive2-ops operator class.

create AreaFeature (Height = int2, Idcode = int2, Tree = int2,
Roof = int2, shape = POLYGON2, reactive = REACTIVE2)\g

define index af-index on Area Feature
Using ReactiveTree (reactive Reactive2-ops)\g

Figures 7 and 8 show the DLMS DFAD data set in the interactive use of the
Reactive-tree, the BLG-tree, and the GAP-tree in the Postgres CIS frontend CEO+ +
(Vijlbrief and van Oosterom 1992). Note that no visual loss of information occurs at
the top map which is created from the same geographic data set. The CEO+ + system
automatically generates Postquel queries with the proper values for the BLG-tree and
the Reactive-tree depending on the current scale. For the map in figure 7 the following
query is generated:

retrieve (blgpgn2 = BlgZPgn(AreaFeature.shape, "O.O1"::float4))
where AreaFeature.reactive && "(13,40,23,47,2)"::REACTIVE2
sort by AreaFeature.oid

500 P. van Oosrerom and V. Schenkelaars

Figure 7. Using the GAPIReactive-tree and BLG-tree (DLMS DFAD; coarse map).

Figure 8. Using the GAPIReactive-tree and BLG-tree (DLMS DFAD; detail map).

Development of an interactive multiscale CIS 50 1

The Postgres query optimizer automatically selects the Reactive-tree access method
when evaluating this query. The BLG-tree is used by specifying the function BlgZPgn
in the target list of the query. The linearized GAP-tree is reflected by the sorr by clause
of the query.

5. Performance results
In this section the benchmarks of the reactive data structures are presented. In 8 5.1

The World Databank I1 (WDB 11; see figure 9) (Gorny and Carter 1987) test is described.
In 9: 5.2 the results of the tests with the DLMS DFAD data (DMA 1986) of the former
Republic of Yugoslavia are presented. DLMS (Digital LandMass) DFAD (Digital
Feature Analyses Data) Level 1 has a data density which can be compared to 1 : 200000
scale map.

The tests were performed on a Sun SPARCstation I1 (32 Mb main memory) under
SunOs 4.1.2. The data was retrieved over a network file system by Postgres. The special
test program is a simple Postgres frontend application. The response time was measured
with the Unix time command. The test program needs a parameter which indicates the
size of the search area. This size is used to calculate which importance values are
retrieved: thus less important features are retrieved when the area is smaller. Of course,
the user could overule the level of importance, as generated by the frontend, in a specific
query.

The R-tree has no mechanism to select on importance level, that is why the R-tree
retrieves many more objects in the larger areas. The following cases were tested: 1. no
index structure, 2. an R-tree index, 3. an R-tree index and a BLG-tree, 4. a Reactive-tree
index and a BLG-tree. The test on the DLMS DFAD data set uses the GAP-tree as well
in the last case. In all tests, ten random area queries are executed. The response time

Figure 9. Using the Reactive-tree and BLG-tree (WDB 11).

502 P. van Oosterom and V. Schenkelaars

is presented in seconds and is the average time over the ten randomly generated queries.
The Reactive-tree uses importance levels to reduce the number of selected objects at
the coarser-level. Actually, the information density (i.e., the number of displayed
features) should remain equal between the varying scales.

5.1. The World Data Bank I1 test
The WDB I1 set is not ideal for the Reactive-tree because the number of objects does

not increase enough when a lower importance level is reached. But because of the very
large polylines in the dataset, the BLG-tree resulted in a substantial performance
improvement. The total number of features in this data set is 38096.

First the raw data needed to be translated into Postgres tuples. This resulted in a
database of approximate 120Mb (116Mb user data, 3 M b index, 1 Mb Postgres
meta-data).

Queries which selected tuples at four different area sizes were executed. The area
sizes varied from 32 X 32 degrees to 4 X 4 degrees latitudellongitude. These area sizes
were selected because in each area decrement, one level of detail more is shown.
The Reactive-tree in the WDB I1 test used importance levels from 1 to 4.

5.2. The DLMS D F A D test
In this section the results of the performance tests of the combined use of the

GAP-tree, the Reactive-tree, and the BLG-tree are presented. The DLMS DFAD data
of the former Republic of Yugoslavia is used. Only the area features are used in order
to evaluate the effectiveness of the GAP-tree.

The visual results of the on-the-fly generalization techniques can be seen in figures
7 and 8. All maps, including the overview in the upper right, are generated by the same
query with only different sized retrieved regions. DLMS DFAD can be regarded as
land-use data with over 100 different area classifications, such as: lake, water, trees,
sand, swamp, tundra, snowlice, industry, commercial, recreational, residential, etc.
A few notes with respect to the visualization:

1. Many colours on the screen are lost in the grey scales of the printer.
2. As the emphasis is on the GAP-tree, the line and points features have been

omitted, resulting in an incomplete map.
3. In the upper right corner of each figure, an overview of the region is shown

without the mainland of Italy.
4. Though the DLMS DFAD data is stored in a seamless database, it has been

digitized on a map sheet base. During this process similar features have
been classified differently; see figure 7 near the 44 degrees meridian.

The DLMS DFAD test database contains 70272 area features (requiring about 60 Mb)
which are given an importance value ranging from 1 to 5, at each level the more detailed
level contains about one order of magnitude more features. Queries which selected
tuples at five different area sizes were executed. The area sizes varied from 1.6 X 1.6
degrees to 0. I X 0.1 degrees latitude/longitude. The use of the GAP-tree will make sure
that the map does not contain gaps when omitting the less important area features.

5.3. Results analysis
The difference in response time between the Reactive-tree and the R-tree decreases

when moving to smaller areas as the difference in the number of returned objects
narrows. Tables 1 and 3 show the average number of returned objects for each method.

Development of an interactive mulriscale CIS 503

Table 1. Area sizes and the average number of returned objects in WDB 11.
- -

Area (in square degrees) 16 64 256 1024

No index 16.2 45.9 244.2 1380.4
R-tree 16.2 45.9 244.2 1380.4
R-tree and BLG-tree 16.2 45.9 244.2 1380.4
Reactive-tree and BLG-tree 10.7 23.8 67.0 257.6

- -

Table 2. Area sizes and the average response time in WDB 11.

Area (in square degrees) 16 64 256 1024

No index 205.5 21 1.2 230.8 348.8
R-uee 3.4 7.0 27.0 143.5
R-tree and BLG-tree 1.8 2.2 5.0 15.3
Reactive-tree and BLG-tree 2.3 2.6 3.2 4.9

Table 3. Area sizes and the average number of returned objects in DLMS DFAD.

Area (in square degrees) 0.0 1 0.04 0.16 0.64 2.56

No index 25.9 64.7 198.0 723.6 2262.3
R-tree 25.9 64.7 198.0 723.6 2262.3
R-tree and BLG-tree 25.9 64.7 198.0 723.6 2262.3
GAPIReactive-tree and BLG-tree 25.9 52.8 43.6 55.8 48.7

Table 4. Area sizes and the average response time in DLMS DFAD.

Area (in square degrees) 0.01 0.04 0.16 0.64 2.56

No index 113.8 117.7 127.1 183.4 378.7
R-tree 6.6 10.2 19.0 80.5 285.8
R-tree and BLG-tree 4.3 5.7 8. I 21.2 61.2
GAPIReactive-tree and BLG-tree 5.4 6.9 7.5 9.7 7.3

In a similar way, the BLG-tree is more effective when used in a large area search.
In that case, a lot of polyline or polygon points can be omitted.

All in all, the Reactive-tree in combination with the BLG-tree gives very good
improvements. The process of selection and generalization results in a better map
without too much detail. The selection could be done with the R-tree, but in that case
a user should change the queries on every scale, in order to select only the desired
objects. Also, the important objects would then be located at the leaf level in the tree
just as the other objects, which would slow down the small-scale queries. Figures 10
and 1 1 show the response times of the different methods, while tables 2 and 4 show
the same information in tabular form.

Using no index at all results in extremely long response times for data sets of the
presented size even for relatively small query regions: 205 seconds for WDB 11

504 P. van Oosterom and V. Schenkelaars

(16 square degrees) and 1 13 seconds for DLMS DFAD (0.0 1 square degrees); see tables
2 and 4. This is due to the fact that a sequential scan over the whole data set has to be
performed. Using a spatial index structure enhances the performance for small query
regions dramatically as can be seen in figures 10 and 11.

For very small query regions, using the R-tree and BLG-tree, is even slightly more
efficient than using the Reactive-tree and the BLG-tree. The reason for this is the small
overhead in using a user-defined access method (Reactive-tree) instead of a Postgres
build-in access method (R-tree). The differences are very small. However, the
R-treelBLG-tree response times increase a lot when the query size region increases.
This is caused by the large number of objects which do not need to be retrieved when
using the Reactive-treelBLG-tree. This makes it possible to achieve more or less
constant response times irrespective of the size of the query region: always less than
5 seconds for WDB 11 and always less than 10 seconds for the DLMS DFAD.

If geometrically close objects are guaranteed to be stored close together on disk,
some extra speed may be gained. The Reactive-tree does not give such a guarantee, it
depends on the inserting order, whether two geometrically close objects are also stored
close on disk. Clustering can be used to improve this storage aspect. In Postgres, a
simple kind of clustering can be easily simulated by retrieving the objects using a
rectangle that contains all the objects. In fact, an access method scan is performed. When
the objects are stored in a new relation in the retrieved order, geometrically close objects
are stored close together on disk. This reduces the number of disk pages to be fetched
for spatial queries and therefore the results will be returned faster.

R w
e
s m No lndex
P
0 t m

R-tree
n
s 50
e

m R-tree and BLG-tree
s
e '0
C

5 Reactive-tree and BLG-tree

2

1 I I 1 I I I I
10 m 50 1m am Jm 1 w

Area (square degrees)

Figure 10. The average response time of the index structures in WDB I 1

n R-tree and BLG-tree
s 50
e

m
S
e '0 GAPIReactive-tree

5 and BLG-tree

R w

6 am
5 ,,

001 0.02 0.05 0.1 0.2 0.5 1 0 2.0 5.0
Area (square degrees)

Figure I I . The average response time of the index structures in DLMS DFAD,

I I I I I I I

' 1 ___.- --A I l----c-r_ _.- i
No lndex
R-tree

Development of an interactive multiscale GIS 505

6. Self-adjusting Reactive-tree
In this section another type of Reactive-tree is presented: the self-adjusting

Reacrive-tree. A drawback of the normal Reactive-tree, as presented in 2.2, is that there
is one-to-one correspondence between the levels in the tree and the importance values.
This is no problem if there is a hierarchical distribution of the data with respect to
the importance values and when these values are properly numbered. However, in case
the distribution is different, one would still'want the Reactive-tree to behave in an
efficient manner. The same is true if the user decides only to use 'strangely' numbered
importance values; e.g., 1, 10, 15, 50, and 900. The pseudo-roots may cause the tree
to be underfull and badly balanced.

The one-to-one correspondence between tree levels and importance values could
be abandoned. It is then possible for objects of different importance to be stored in the
same node (at the same tree level), as long as less important objects are never stored
in nodes above more important objects. It might also be convenient to store objects of
the same importance at different tree levels if this helps to get a well-filled and balanced
tree. There are two ways in which this new object ordering may be carried out:

- In a global manner: nowhere in the tree is a less important object allowed to
be stored on a higher tree level'than a more important object.

- In a local manner: if a node contains an object of a certain importance then the
sub-tree below this node may not contain more important objects.

It is not difficult to see that if the global ordering has to be satisfied, it is not always
possible to get a well-filled (and.balanced) tree. For example, there may be a strange
data distribution, such as: a largenumber of important objects to the left-hand side of
the scene and a number of less important objects located to the far right-hand side.
Objects which are spatially far apart should not be stored in the same sub-tree. However,
if they are stored in different subtrees, then the less important objects would be stored
too high unless there is a path of (nearly empty) pseudo-roots.

Therefore, we abandoned the global ordering and tried to design a Reactive-tree
which satisfies the less strict object ordering. In subsequent research we will carry out
practical testing with both the normal Reactive-tree and the self-adjusting Reactive-tree
for different data sets; both well and badly distributed.

The self-adjusting Reactive-tree satisfies the following defining properties:

I. For each object entry (MBR, imp-volue, object-id), .MBR is the smallest
axes-parallel rectangle that geometrically contains the represented object of
importance imp-value. The most important objects have the lowest importance
values.

2. For each tree entry (MBR, imp-value, child-pointer), MBR is the smallest
axes-parallel rectangle that geometrically contains all rectangles in the child
node and imp-vnlue is the importance of the child-node adequately decremented.

3. All the nodes on the same level are in the same importance value range. This
implies that it is not possible that a subtree contains object entries that are more
important (lower importance value) than the object entries in the parent of this
subtree.

4. Every node contains between m(S Ml2) and M object entries andlor tree entries.
5. The importance of the tree entries is less or equal to the importance value of the

least important (highest importance value) object entry in every node.
6. The root contains at least two entries unless it is a leaf.

506 P. van Oosrerom and V. Schenkelaars

The fact that the empty tree satisfies these properties, and that the Insert and Delete
algorithms (Schenkelaars 1992) do not destroy them, guarantees that a self-adjusting
Reactive-tree always exists.

7. Conclusion
After the Reactive-tree and BLG-tree, the GAP-tree forms a new important step

towards the realization of an interactive multi-scale GIs . It is now possible to
interactively browse through large geographic data sets. In both the DLMS DFAD
database (70000 features, 60Mb) and the WDB 11 database (38 000, 120 Mb) it is now
possible to get map displays at any required scale in about five seconds. In the near
future, more tests with datasets are planned; e.g., with the Topographic base map of
The Netherlands. An interesting open question is how to assign importance values
automatically to features when building the Reactive-tree for a new data set.

A new reactive data structure is presented: the self-adjusting Reactive-tree, which
should be even more effective. Future implementation and testing will have to confirm
this expectation. Another question which still has to be answered is: When is it better
to store the BLG-tree and when is computing a generalized line on the fly preferred?
This is a matter of balancing CPU and disk speed.

Further research is also required to determine how the GAP-tree can be maintained
efficiently under edit operations. Additional further research topics are: the use of
(dynamic) clustering techniques, and the design and implementation of other
generalization techniques to support combination, symbolization, and displacement.

Acknowledgments
We would like to thank the Postgres Research Group (University of California at

Berkeley) for making their system available. Special thanks toTom Vijlbrief for helping
us with the GEO+ + issues. Many valuable comments and suggestions on apreliminary
version of this paper were made by Marcel van Hekken and Paul Strooper.

References
AoV. 1988. Amtliches Topographic-Kartographisches Informationssystem (ATKIS).

Arbeitsgemeinschaft der Vermessungsverwaltungen der Lander der Bundesrepublik
Deutschland (AdV), (in German).

BALLARO, D. H., 1981, Strip trees: a hierarchical representation for curves. Communications of
the ACM. 24, 310-321.

90s. J. V A N DEN. NAELTEN, M. VAN, and TEUNISSEN, W., 1984, IDECAP interactive pictorial
information system for demographic and environmental planning applications. Compurer
Grcrphics Forum, 3, 91-102.

BOUDRIAULT,G., 1987, Topology in the TIGER File. In Proceedings ofAuto-Carro 8 (Bethesda,
MD: American Congress on Surveying and Mapping) pp. 258-269.

DGlWG 1992, DIGEST-Digital geographic information-xchange standards-dition I . I .
(St. Louis, Mo: Defence Mapping Agency, Digital Geographic Information Working
Group).

DMA, 1986, Product specificalions for digital feature analysis data (DFAD): Level I and
Level 2 (St Louis, Ma: Defence Mapping Agency, Aerospace Center).

DOUGLAS, D. H., and PEUCKER, T. K., 1973, Algorithms for the reduction of points required to
represent a digitized line or its caricature. Canadian Cartographer, 10, 1 12- 122.

GORNY, A. J., and CARTER, R., 1987, World Data Bank 11: General Users Guide (Washington
D.C., US Central Intelligence Agency).

GONTHER, O., 1988, Eficient Structures for Geometric Data Management. No. 337 in Lecture
Notes in Computer Science (Berlin: Springer-Verlag).

Development of an interactive multiscale GIS 507

GU~TMAN, A,. 1984, R-Trees: A Dynamic Index Structure for Spatial Searching.ACMSIGMOD,
13,47-57.

JONES, C. B.. and ABRAHAM, I. M., 1987, Line generalization in a global cartographic database.
Carrographica. 24, 3 2 4 5 .

LAGRANGE, 1. P., RUAS, A., and BENDER, L., 1993, Survey on Generalization (Paris: Institut
Geographique National).

MOLENAAR, M.. 1989, Single valued vector maps: a concept in geographic information systems.
Geo-lnformarionssysreme, 2, 18-26.

MULLER, J. C., WEIBEL, R., LAGRANGE, J. P., and SALGE, F.. 1993. Generalization: state of the art
and issues. European Science Foundation, GISDATA Task Force on Generalization
(London: Taylor & Francis).

OOSTEROM, P., VAN. 1989, A reactive data structure for Geographic Information Systems.
In Proceedings of Auto-Carto 9 (Bethesda, MD: American Congress on Surveying and
Mapping), pp. 665674.

OOSTEROM, P., VAN, 1991, The Reactive-tree: a storage structure for a seamless, scaleless
geographic database. In Proceedings of Auto-Carto 10 (Bethesda, MD: American
Congress on Surveying and Mapping), pp. 393407.

OOSTEROM, P., VAN, 1993, Reactive Data Structures for Geographic Information Systems
(Oxford: Oxford University Press).

OOSTEROM, P., VAN, and BOS, 1.. VAN DEN, 1989, An object-oriented approach to the design of
Geographic Information Systems. Computers & Graphics, 13, 409418.

OOSTEROM, P., VAN, and SCHENKELAARS, V., 1993, Design and implementation of a multi-scale
GIs. In Proceedings EGIS'93: Fourth European Conference on Geographical
Informarion Sysrems (Utrecht: EGIS Foundation), pp.712-722.

PEUCKER. T. K., and CHRISMAN, N., 1975, Cartographic data srrucrures. American
Cartoerooher. 2. 55-69.o ..,. ~. ,-,-- -~

POSTGRES RESEARCH GROUP, 1991, The Postgres reference manual, Version 3.1. Technical report
Memorandum, Electronics Research Laboratory, College of Engineering, Berkeley, CA.

PROJECI'GROEP. 1982, IDECAP interactief pictorieel inf~rmaties~steem voor demografische en
planologische toepasingen: Een verkennend en vergelijkend onderzoek. Technical report
Publicatiereeks 198212, Stichting Studiecentmm voor Vastgoedinformatie te Delft.

SCHENKELAARS, V. F., 1992, Master's thesis: Implementation of reactive data structures for
Postgres. Technical report FEL-924343, FEL-TNO Divisie 2, The Hague.

SHEA, K. S., and MCMASTER, R. B., 1989, Cartographic generalization in a digital environment:
when and how to generalize. In Proceedings of Auto-Carto 9 (Bethesda, MD, American
Congress on Surveying and Mapping). pp. 56-67.

STONEBRAKER. M.. ROWE, L. A,, and HIROHAMA, M.. 1990, The implementation of Postgres.
I.E.E. E. Trarisacrions on Knowledge and Darn Engineering, 2, 125-142.

VIJLBRIEF~T., and OOSTEROM, P.,vAN, 1992, The GEO system: an extensibleGIS. In Proceedings
of the 5th Inrernarional Symposium on Spatial Data Handling, Charleston, Sourh Carolina
(Columbia, SC: International Geographical Union), pp.40-50.

