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Research Article 

The development of an interactive multi-scale GIST 
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Faculty of Economics, Erasmus University, P.O. Box 1738. 
3000 DR Rotterdam, The Netherlands 

(Received 12 January 1994: accepted 12 May 1994) 

Abstract. This paper presents the development of the first geographical 
information system (GIS) that may be used to manipulate a single dataset at a very 
large range of scales (different detail levels). The design of this multi-scale CIS is 
fully integrated in the open DBMS Postgres and the open GIS CEO+ +. Besides 
the system design, this paper will also give details of the implementation in the 
Postgres DBMS environment of three generalization tools: I .  the BLG-tree for line 
and area simplification, 2. the Reactive-tree for selection based on importance and 
location, and 3. the GAP-tree for solving problems when using the other two 
structures for an area partitioning. Together with the geographical frontend, the 
DBMS forms the flexible basis for the realization of powerful GIS applications. The 
implementation has been successfully benchmarked with two large datasets: World 
Darabank I1 and DLMS DFAD. The response times improve by one to two orders 
of magnitude. 

1. Introduction 
The advent of geographical information systems (GISs) has changed the way people 

use maps and geographic data. Modem information systems enable browsing through 
geographical data sets by selecting (types of) objects and displaying them at different 
scales. Just enlarging the objects when the user zooms in, however, results in a poor 
map. Not only should the objects be enlarged, but they should be displayed with more 
detail (because of the higher resolution), and less significant objects should be displayed 
also. 

A simple solution is to store the map at different scales (or level of details) but this 
introduces redundancy with all its related drawbacks: possib~k inconsistency and 
increased memory usage. If possible, therefore, the geographical data should be stored 
in an integrated manner without redundancy, and supported by a special data structure 
if required. 

Detail levels are closely related to cartographic map generalization techniques. 
The concept of on-the-jy map generalization is very different from the implemeritation 
approaches described by Miiller er al .  (1993): batch and inreracrive generalization. 
The term batch generalization is used for the process in which a computer gets an input 

t Parts of this paper are based on the paper The Design and Implementation of a Multi-Scale 
GIs, which has been awarded the first prize at the EGIS'93 conference, Genoa (van Oosterom 
& Schenkelaars, 1993). 
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data set and returns an output data using algorithms, rules, or constraints (Lagrange 
et al. 1993) without the intervention of humans.. This contrasts with interactive 
generalization (amplified intelligence) in which the user interacts with the computer to 
produce a generalized map. 

On-the-fly map generalization does not produce a second data set, as this would 
introduce redundant data. It tries to create a temporary generalization, e.g., to be 
displayed on the screen, from one detailed geographic database. The quick responses, 
required by the interactive users of a GIs, demand the application of specific data 
structures, because otherwise the generalization would be too slow for reasonable data 
sets. Besides being suited for map generalization, these data structures must also provide 
spatial properties; e.g., it must be possible to find all objects within a specified region 
efficiently. The name of these types of data structures is reactive data structures 
(van Oosterom 1989, 1991, 1993). 

The emphasis is put on the generalization techniques simpl$carion and selection. 
The core of the reactive data structure is the 'Reactive-tree' (van Oosterom 1991). 
a spatial index structure, that also manages the selection part of the generalization. The 
simplification part of the process is supported by the 'Binary Line 
Generalization-tree' (van Oosterom and van den Bos 1989). When using the 
Reactive-tree and the BLG-tree for the generalization of an area partitioning, some 
problems are encountered: gaps may be introduced by omitting small features and 
mismatches may occur as a result of independent simplification of common boundaries. 
These problems can be solved by additionally using the 'GAP-tree' (described here). 

The Postgres DBMS (Stonebraker et a l .  1990) is extended with these reactive data 
structures. Postgres. the successor of Ingres, is a research project directed by Michael 
Stonebraker at the University of California, Berkeley. The characteristic new concepts 
in Postgres are: support for complex objects, inheritance, user extensibility (with new 
data types, operators and access methods), versions of relations, and support for rules. 
In particular, the extensibility of Postgres is used for the implementation of the reactive 
data structures. The Postgres reference manual (Postgres Research Group 1991) 
contains all the information required to use the system. 

Short descriptions of the principles of the BLG-tree and the Reactive-tree are given 
in 9 2. The GAP-tree is described in 9 3. Postgres related implementation aspects are 
described in $4.  The implementation is tested and evaluated with two large data sets. 
The performance improvements achieved by using the new reactive data structures can 
be found in  $ 5 .  In the next section, an enhanced version of the Reactive-tree is 
presented: the self-adjusting Reactive-tree. This new version is better suited to deal with 
all kinds of object distributions among the detail levels. Finally, conclusions are given 
in 9: 7 along with some indications of future work. 

2. Reactive data structures 
The term reactive data structure was introduced in the IDECAP project 

(Projectgroep 1982, van den Bos et al. 1984). A reactive data structure is defined as 
a geometric data structure with detail levels, intended to support the sessions of a user 
working in an interactive mode. It enables the information system to react promptly 
to user actions. This section gives a short description of two reactive data structures: 
the BLG-tree and the Reactive-tree. (More details can be found in van Oosterom, 1991, 
van Oosterom and van den Bos 1989). These structures are used for the cartographic 
generalization techniques simplification and selection. There is still no support for the 
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Figure I. Binary Line Generalization tree. 

other generalization techniques: combination, symbolization, exaggeration, and 
displacement (Shea and McMaster 1989). 

2.1. BLC-tree 
The Binary Line Generalization tree (BLG-tree) is a data structure used for line 

generalization. Only important objects (represented by polylines) need to be displayed 
on a small scale map, but without a generalization structure, these polylines are drawn - ~ 

with too much detail. A few well-known structure for supporting line generalization 
are the Strip tree (Ballard 1981), the Arc tree (Giinther 1988). and the Multi-Scale Line 
Tree (Jones and Abraham 1987). We use another data structure, the BLG-tree, because 
i t  is suited for polylines, continuous in detail level, and can be implemented with a 
simple binary tree. 

The algorithm to create a BLG-tree is based on the Douglas-Peucker algorithm 
(Douglas and Peucker 1973). The first approximation for a polyline is a line between 
the first point PI and the last point P,. These points are always necessary, otherwise 
polygons which are composed of several polylines may not be closed when the 
end-points are omitted. T o  acquire the next approximation the point Pk with the greatest 
distance with respect to the line segment (PI ,  P,) is selected. When the original polyline 
is represented with these three points P I ,  Pk, and P,, a better approximation is normally 
found. The point P k  is used to split the polyline into two parts. The same procedure is 
recursively applied to the polyline parts from PI to PI, and from PI. to P,,. Figure 1 
illustrates the BLG-tree creation procedure and the resulting binary tree. The tree is 
stored for each polyline in order to avoid the expensive execution of the 
Douglas-Peucker algorithm each time a line generalization is needed. 

2.2. Reactive-tree 
The Reactive-tree is based on the R-tree (Guttman 1984). and has therefore similar 

properties. The main differences with the R-tree are that the internal nodes of a 
Reactive-tree can contain both tree entries and object entries, and the leaf nodes can 
occur at higher tree levels. An object entry looks like: (MBR, imp-value, object-id) 
where MRR is the minimal axes-parallel bounding rectangle, imp-value is a positive 
integer indicating the importance level, and object-id contains a reference to the object. 
The type of an object can be any geometric type; e.g., point, polyline, or polygon. 

A basic notion is the importance of an object o, which is a function of its type 
(or role), thematic attributes, and geometric size: I(o) = f(type, attributes, size). 
For example, the size of an area object could be measured by its areaA(o) or perimeter 
P(o). The weight of the type of the object depends on the application. For example, a 
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Figure 2. An example of Reactive-tree rectangles. 

Figure 3. The Reactive-tree 

city area may be more important than a grassland area in a given application. This could 
be described with the following importance function (without using the thematic 
attributes): I(o) = A(o)* WeightFactotfo). 

A tree entry looks like (MBR, imp-value, child-pointer) where child-pointer 
contains a reference to a subtree, MBR is the minimal axes-parallel bounding rectangle 
of the whole subtree, while imp-value (I(o)) contains the importance of the child nodes 
decremented by one. The Reactive-tree has the following properties which must be 
maintained during insertion and deletion: 

I. Each node is a physical disk page which contains between MI2 and M entries 
unless it has no siblings (a pseudo-root). 

2. All nodes on the same level contain entries with the same importance value. 
More important entries are stored higher. 

3. The root contains at least two entries unless it is also a leaf. 

In nodes with both tree entries and object entries, the importance level of the object 
entries is equal to the importance of the tree entries. The Insert and Delete algorithms 
which maintain the properties of the Reactive-tree are described in van Oosterom 
(1991). Figure 2 shows a scene with objects and MBRs. Figure 3 shows the resulting 
Reactive-tree. Tree entries are marked with a circle. 

The further one zooms in, the more tree levels must be addressed. Roughly stated, 
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during map generation based on a selection from the Reactive-tree, one should try to 
choose the required importance value such that a constant number of objects will be 
selected. This means that if the required region is large only the more important objects 
should be selected and if the required region is small, then the less important objects 
must also be selected. The recursive Search algorithm starts by accessing the mot of 
the tree. All the object entries in the node are checked for overlap with the search area, 
if there is overlap, the object is returned. If the importance of the root is larger than the 
required importance, all the tree entries are checked for overlap. In case overlap exists, 
the corresponding subtree is descended. This recursive process is continued for 
all subtrees, until an importance level equal to the required level is reached. Since all 
objects of the same importance are on the same level, no further search is needed in 
this case. 

3. The GAP-tree 
This section first describes an area partitioning as a map basis, and the problems 

encountered when generalizing this type of map. In 8 3.2 the key to the solution is 
introduced: the area partitioning hierarchy. The creation of the structure that supports 
this hierarchy, the GAP-tree, is outlined in $3.3. Operations on the GAP-tree are 
described in 5 3.4. 

3.1. Problems with an area partitioning 
An area partitioning (where each point in the two-dimensional domain belongs to 

exactly one of the areas, there are no overlaps or gaps) is a very common structure used 
as a basis for many maps; e.g. choropleths. Two problems occur when using the 
techniques described in the previous section: 

I. Simplification: Applying line generalization to the boundaries of the area 
features might result in ugly maps because two neighboring areas features may 
now have overlaps andlor gaps. A solution for this problem is to use a topological 
data structure and apply line generalization to the common edges. 

2. Selection: Leaving out an area will produce a map with a hole which is of course 
unacceptable. No obvious solution exists for this problem. 

A solution for the second (and also for the first) problem is presented. It is based on 
a novel generalization approach called the Area Partitioning Hierarchy, which can be 
implemented efficiently in a tree structure. 

3.2. Area partitioning hierarchy 
The gap introduced by leaving out one area feature must be filled again. The. best 

results will be obtained by filling the gap with neighbouring features. This can be easy 
in case of so-called 'islands': the gap will be filled with the surrounding area, but it may 
be more difficult in other situations. 

By taking both the spatial relationships and the importance (see 5 2.2) of an area 
feature into account, an area partitioning hierarchy is created. This hierarchy is used - 
to decide which area is removed and also which other area will fill the gap of the 
removed feature. 

3.3. Building the GAP-tree 
The polygonal area partitioning is usually stored in a topological data structure with 

nodes, edges, and faces. The process, described below, for producing the area 
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right 
2-cell 2-cell 

Figure 4. The topological data structure. 

partitioning hierarchy assumes such a topological data structure (Boudriault 1987, 
DGIWG 1992, Molenaar 1989, Peucker and Chrisman 1975); see figure 4. The 
topological elements have the following attributes and relationships: 

- a node (or 0-cell) contains its point and a list of references to edges sorted on 
the angle; 

- an edge (or I-cell) contains its polyline, length and references to the left and 
to the right face; 

- a face (or 2-cell) contains its WeightFacror, area, and a list of sorted and signed 
references to edges forming the outer boundary and possibly inner boundaries; 

Note that this topological data structure contains some redundant information because 
this enables more efficient processing later on. After the topological data structure has 
been created, the following steps will produce a structure, called the Generalized Area 
Partitioning (GAP)-tree, which stores the required hierarchy: 

1 .  For each face in the toplogical data structure an unconnected empty node in the 
GAP-tree is created; 

2. Remove the least important area feature a ,  i.e., with the lowest importance I(a), 
from the topological data structure; 

3. Use a topological data structure to find the neighbours of a and determine for 
every neighbour b the length of the common boundary L(a, b) 

4. Fill the gap by selecting the neighbour b with the highest value of the collapse 
function: Collapse (a, b) = f (L(a, b), CompatibleTypes(a, b), WeightFactor(b)). 
The function CompatibleTypes(a, b) determines how close the two feature types 
of a and b are in the feature classification hierarchy associated with the data set 
(AdV 1988, DGIWG 1992, DMA 1986). For example, the feature types 'tundra' 
and 'trees' are closer together than feature types 'tundra' and 'industry' in the 
Digital Landmass Digital Feature Analysis Data (DLMS DFAD, DGIWG 1992); 

5. Store the polygon and other attributes of face a in its node in the GAP-tree and 
make a link in the three from parent b to child a;  

6. Adjust the topological data structure, importance value I(b), and the length of 
common boundaries L(b, c) for every neighbour c of the adjusted face b to the 
new collapsed situation. 

Repeat the described steps 2-6 until all features in the topological data structure are at 
the required importance level (for a certain display operation). This procedure is quite 
expensive and probably too slow for large data sets to be performed on-the-fly. 
Therefore, the hierarchy is pre-computed and stored in the GAP-tree. The 2-6 steps are 
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Figure 5. The scene and the associated GAP-tree. 

now repeated until only one huge area feature is left, because we cannot know what 
the required importance level will be during the interactive use in a GIs. The last area 
feature will form the root of the GAP-tree. Further, a priority queue may be used to find 
out efficiently which face a has the lowest importance value [(a) in step 2 of the 
procedure. 

Figure 5 (a) shows a scene with a land-use map in the form of an area partitioning. 
In figure 5(b) the GAP-tree, as computed by the procedure described above, is 
displayed. Note that a few attributes are shown in figure 5(b): polygon, area, and 
perimeter of the final feature in the GAP-tree. The polygon is a real self-contained 
polygon with coordinates. and it is not a list of references. It is important to realize 
that this data structure is not redundant with respect to storing the common 
boundaries between area features. The only exception to this is the situation where 
a child has a common edge with another child or its parent; see the thick edges in 
figure 5 (a). 

More statistical information has to be obtained on how frequently this situation 
occurs in real data sets. Islands may be relatively uncommon for many area 
partitionings, particularly statistical reporting zones and political boundaries. A solution 
for the 'common edges' problem is to store references to these edges, similar to a 
topological data structure. Care must be taken in order to assure that these edges are 
also in the right place in the GAP-tree. Because the tree is traversed (and displayed) 
in a breadth-first order, the best location for a shared edge is together with the area 
feature that is on the highest level in the GAP-tree. The child that shares this edge, 
contains a reference to it. The objects retrieved from the database are buffered (in main 
memory) and displayed, so references can be traced efficiently. In the case of a common 
edge between two objects at the same level, the edge is stored in the first one and 
the second one contains the reference to this edge. A final problem is illustrated in 
figure 6 where the neighbour of feature F2 is feature F1. Feature FI, which contains 
edge El 2, falls outside the query region. Therefore, the common edge El 2 is not in the 
buffer. However, the missing edge is not really necessary as it is also completely outside 
the query region. The area feature F2 can be clipped against the query region. 

As can be seen in figure 5 (b) the GAP-tree is a multi-way tree and not a binary tree. 
Some visual results of the on-the-fly generalization techniques with real data are 
displayed in 8 5. The additional operations using the GAP-tree, not necessarily related 
to visualization. are described in the next subsection. 
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Figure 6. Missing edges with the query region overlap selection. 

3.4. Operafions on the GAP-tree 
As a feature in the GAP-tree contains the total generalized area, the actual area A 

of the polygon has to be corrected for the area of its children with the following formula: 

A(actua1) = A(parent) - 2 A(chi1d) 
child E children 

It is important to realize that only one level down the tree has to be visited for this 
operation and not the whole subtree below the parent node. In a similar way the 
perimeter P of a polygon can be computed, the only difference bring that the perimeter 
of the children have to be added to the perimeter of the parent. This results in the 
formula: 

P(actua1) = P(paren1) + P(chi1d) 
chiid E children 

This formula for the perimeter only works if the children have no edges in common 
with each other or with the parent. Often the boundaries of the areas in the GAP-tree 
are indeed non-redundant. This also enables the use of the BLG-tree for simplification 
of important area features in small-scale maps without producing overlaps or gaps 
between features. The use of the BLG-tree has a very positive effect on the response 
times for small-scale maps (see 9 5). 

4. Postgres Implementation 
In this section we indicate how the implementations of the reactive data structures 

are linked to the Postgres DBMS. There is a big implementation difference between 
the BLG-tree and the Reactive-tree, because the BLG-tree is implemented as a part of 
an abstract data type, while the Reactive-tree is a new access method. The latter is far 
more difficult to add, because an access method interacts with many (undocumented) 
parts of the Postgres DBMS. The reader will be spared the C-code details of the 
implementation, which can be found in Schenkelaars (1992). The implementations of 
the BLG-tree, Reactive-tree. and GAP-tree are described in 994.1, 4.2, and 4.3 
respectively. An example using these structures is given in 94.4. 
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4.1. BLG-tree 
The BLG-tree is integrated in the POLYLINEZ data type (Vijlbrief and van 

Oosterom 1992). In Postgres, each data type should be provided with at least two 
functions: an input function which converts an external ASCII representation into an 
internal representation, and an output function which translates the internal representa- 
tion into an ASCII string. The POLYLINEZ input function is modified to create a 
BLG-tree and to store this tree along with the defining points of the original line. 

The process of retrieving a generalized polyline from a BLG-tree is less complex 
than the creation process. The output function Blg2Pln is provided to retrieve a 
generalized polyline. It is called with two parameters: the original polyline, and the 
maximum distance (error) between the original polyline and the generalized polyline. 
Note that in this manner, the database does not return unnecessary points to the 
applications, which can save a substantial amount of data transfer time. For polygons 
a similar implementation is created: the POLYGON2 data type with the output function 
BlgZPgn. 

4.2. Reactive-tree 
In order to use the Reactive-tree as a new access method, some meta information 

must be inserted in the following Postgres system tables: pg-am, pgqroc, 
pg-operator, pg-opclass, pg-amop, and pgiamproc. An access method has to be 
registered in the table pg-am. This is done with the following query: 

append pg...am( 
amname = "ReactiveTree", amowner = "6", 
amstrategies = 8, amsupport = 6, 
amgettuple = "reactgettuple", aminsert = "reactinsert", 
amdelete = "reactdelete", ambeginscan = "reactbeginscan", 
amrescan = "reactrescan", amendscan = "reactendscan*', 
ammarkpos = "reactmarkpos',', amrestrpos = "reactrestrpos", 
ambuild = "reactbuild") 

The first attribute contains the name of the new access 'method (ReactiveTree). 
The second attribute indicates the user-id of the owner of the access method; in this case 
user-id number 6. In Postgres an access method is based on: 

1. A set of (Boolean) access method userfunctions to indicate the relative position 
of two objects; in case of a two-dimensional spatial index this set contains 8 
(amstrategies) elements. For the Reactive-tree these are called: LeftZReaRea, 
OverleftZReaRea, OverlapZReaRea, RightZReaRea, OverrgtZReaRea, 
EqualZReaRea, ContainZReaRea, and ContByZReaRea. For each of these 
functions an operator symbol has to be defined (in the pg-operator table), which 
can be manipulated by the query optimizer. These will be called the access 
method user operators and are numbered according to the following sequence 
< C ,  &<,&&, &>, > >, -=, -,and @. 

2. A set of access merhodprocedures; in case of the Reactive-tree 6 (amsupport) 
functions are needed and numbered in the order: UnionZReaRea, 
InterZReaRea, SizeZRea, IsObjectZRea, MakeTreeObjZRea, ReactZlmp. 

3. A fixed set of access method manipulation functions: 

- amgettuple contains the name of the function which performs an index 
search: reactgettuple; 
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- aminsert contains the function which inserts a tuple in the index: 
reactinsert; 

- amdelete contains a function which deletes a tuple from the index: 
reactdelete; 

- ambeginscan contains a function which initializes an index scan: 
reactbeginscan; 

- amrescan contains a function which rescans a previous started scan: 
reactrescan; 

- amendscan contains a function which ends an index scan: reactendscan: 
- ammarkpos contains a function which marks a position in a scan: 

reactmarkpos; 
- amrestrpos contains a function which releases a marked position in the scan: 

reactrestrpos: 
- ambuild contains a function which initializes the index and add all tuples 

that are in the relation: reactbuild. 

All these functions (access method user functions, access method procedures, and 
access method manipulation functions) must be registered in the p g p r o c  table. 
This is done, for example for the reactinsert, as follows: 

define function reactbuild (language = "c", returntype = int4) 
as "$REACTHOME/reactree.o" 

One problem arises: the functions often need arguments of types that do not exist 
as standard Postgres types. For example reactinsert needs a Relation type. Therefore 
no arguments, and an int4 as return value, are defined in the function definition. Postgres 
does no type checking in this case. Only the number of arguments the function expects, 
has to be provided: 

define function reactinsert (language = "c", returntype = int4) 
as "$REACTHOME/reacttree.o" 

replace p g p r o c  (pronargs = 2) where pgproc.proname = "reactinsert" 

For each data type the user wants to access with the defined access method, an "operator 
class" has to be defined (in the pg-opclass table). An operator class collects both access 
method procedures (registered in the pg-amproc table) and access method operators 
(registered in pg-amop table). 

In order to make sensible use of the Reactive-tree, a data type is required that 
possesses both a geometric attribute and an importance level. For this purpose a new 
type was created: REACTIVEZ, which contains a bounding box and an importance 
level. 

The following sequence of Postquel queries shows the registration of the operator 
class Reactive2-op in the pg-opclass table, and examples of adding an operator 
respectively a procedure to the p c a m o p  table respectively to the pg-amproc table. 

append pgopclass (opcname = "Reactive2-ops") 

append pg-amop( 
amopid = am.oid, amopclaid = opc.oid, 
amopopr = opr.oid, amopstrategy = "19'::int2, ... ) 
from opc in pgopclass, opr  in pgoperator ,  

opt in pgtype ,  am in p g a m  
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where opr.oprname = " < <" and opt.typname = "REACTIVE2" and 
opt.oid = opr.oprright and opt.oid = opr.oprleft and 
amamname = "ReactiveTree" and opc.opcname = "Reactive2-ops" 

append pg_amproc( 
amid = am.oid, amopclaid = opc.oid, 
amproc = proc.oid, amprocnum = "lY'::int2) 
from opc in pgopclass, proc in pgproc, 

am in p g a m  
where am.amname = "ReactiveTree" and 

opc.opcname = "Reactive2-ops" and proc.proname = "Union2ReaRea9' 

4.3. GAP-tree 
A possible implementation difficulty of the GAP-tree is the fact that it is a multi-way 

tree and not a binary tree. Therefore, a simple linear version has been derived from the 
GAP-tree by putting the features in a list based on their level in the tree. The top level 
feature in the tree will be the first element of this list, the second level features will 
follow, and so on. For example the linear list for the scene in figure 5 is: GRASS, 
FOREST, CORNFIELD. TOWN, LAKE, CENTER, PARK, INDUSTRY, ISLAND, 
POND. When the polygons are displayed in this order, a good map can be produced 
without the GAP-tree. However, it is very difficult to compute the actual area without 
the GAP-tree. 

As mentioned before, the on-the-fly generalization has been developed within the 
Postgres DBMS environment. Postgres is an extensible relational system. A relation 
does not guarantee any order among its elements. A good display can be obtained by 
sorting on the sequence number in the list or on the area of the feature. 

4.4. Example 
In this 5 an example of the use of the Reactive-tree, BLG-tree, and GAP-tree will 

be given. The Reactive-tree access method can be defined before any tuples are added 
to the relation, or one can first insert all tuples and decide later that a Reactive-tree is 
needed. The following two Postquel queries show the definition of the user hble 
AreaFeature and the definition of a Reactive-tree index on this table using the 
Reactive2-ops operator class. 

create AreaFeature (Height = int2, Idcode = int2, Tree = int2, 
Roof = int2, shape = POLYGON2, reactive = REACTIVE2)\g 

define index af-index on Area Feature 
Using ReactiveTree (reactive Reactive2-ops)\g 

Figures 7 and 8 show the DLMS DFAD data set in the interactive use of the 
Reactive-tree, the BLG-tree, and the GAP-tree in the Postgres CIS frontend CEO+ + 
(Vijlbrief and van Oosterom 1992). Note that no visual loss of information occurs at 
the top map which is created from the same geographic data set. The CEO+ + system 
automatically generates Postquel queries with the proper values for the BLG-tree and 
the Reactive-tree depending on the current scale. For the map in figure 7 the following 
query is generated: 

retrieve (blgpgn2 = BlgZPgn(AreaFeature.shape, "O.O1"::float4)) 
where AreaFeature.reactive && "(13,40,23,47,2)"::REACTIVE2 
sort by AreaFeature.oid 
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Figure 7. Using the GAPIReactive-tree and BLG-tree (DLMS DFAD; coarse map). 

Figure 8. Using the GAPIReactive-tree and BLG-tree (DLMS DFAD; detail map). 
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The Postgres query optimizer automatically selects the Reactive-tree access method 
when evaluating this query. The BLG-tree is used by specifying the function BlgZPgn 
in the target list of the query. The linearized GAP-tree is reflected by the sorr by clause 
of the query. 

5. Performance results 
In this section the benchmarks of the reactive data structures are presented. In 8 5.1 

The World Databank I1 (WDB 11; see figure 9) (Gorny and Carter 1987) test is described. 
In 9: 5.2 the results of the tests with the DLMS DFAD data (DMA 1986) of the former 
Republic of Yugoslavia are presented. DLMS (Digital LandMass) DFAD (Digital 
Feature Analyses Data) Level 1 has a data density which can be compared to 1 : 200000 
scale map. 

The tests were performed on a Sun SPARCstation I1 (32 Mb main memory) under 
SunOs 4.1.2. The data was retrieved over a network file system by Postgres. The special 
test program is a simple Postgres frontend application. The response time was measured 
with the Unix time command. The test program needs a parameter which indicates the 
size of the search area. This size is used to calculate which importance values are 
retrieved: thus less important features are retrieved when the area is smaller. Of course, 
the user could overule the level of importance, as generated by the frontend, in a specific 
query. 

The R-tree has no mechanism to select on importance level, that is why the R-tree 
retrieves many more objects in the larger areas. The following cases were tested: 1. no 
index structure, 2. an R-tree index, 3. an R-tree index and a BLG-tree, 4. a Reactive-tree 
index and a BLG-tree. The test on the DLMS DFAD data set uses the GAP-tree as well 
in the last case. In all tests, ten random area queries are executed. The response time 

Figure 9. Using the Reactive-tree and BLG-tree (WDB 11). 
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is presented in seconds and is the average time over the ten randomly generated queries. 
The Reactive-tree uses importance levels to reduce the number of selected objects at 
the coarser-level. Actually, the information density (i.e., the number of displayed 
features) should remain equal between the varying scales. 

5.1. The World Data Bank I1 test 
The WDB I1 set is not ideal for the Reactive-tree because the number of objects does 

not increase enough when a lower importance level is reached. But because of the very 
large polylines in the dataset, the BLG-tree resulted in a substantial performance 
improvement. The total number of features in this data set is 38096. 

First the raw data needed to be translated into Postgres tuples. This resulted in a 
database of approximate 120Mb (116Mb user data, 3 M b  index, 1 Mb Postgres 
meta-data). 

Queries which selected tuples at four different area sizes were executed. The area 
sizes varied from 32 X 32 degrees to 4 X 4 degrees latitudellongitude. These area sizes 
were selected because in each area decrement, one level of detail more is shown. 
The Reactive-tree in the WDB I1 test used importance levels from 1 to 4. 

5.2. The DLMS D F A D  test 
In this section the results of the performance tests of the combined use of the 

GAP-tree, the Reactive-tree, and the BLG-tree are presented. The DLMS DFAD data 
of the former Republic of Yugoslavia is used. Only the area features are used in order 
to evaluate the effectiveness of the GAP-tree. 

The visual results of the on-the-fly generalization techniques can be seen in figures 
7 and 8. All maps, including the overview in the upper right, are generated by the same 
query with only different sized retrieved regions. DLMS DFAD can be regarded as 
land-use data with over 100 different area classifications, such as: lake, water, trees, 
sand, swamp, tundra, snowlice, industry, commercial, recreational, residential, etc. 
A few notes with respect to the visualization: 

1. Many colours on the screen are lost in the grey scales of the printer. 
2. As the emphasis is on the GAP-tree, the line and points features have been 

omitted, resulting in an incomplete map. 
3. In the upper right corner of each figure, an overview of the region is shown 

without the mainland of Italy. 
4. Though the DLMS DFAD data is stored in a seamless database, it has been 

digitized on a map sheet base. During this process similar features have 
been classified differently; see figure 7 near the 44 degrees meridian. 

The DLMS DFAD test database contains 70272 area features (requiring about 60 Mb) 
which are given an importance value ranging from 1 to 5, at each level the more detailed 
level contains about one order of magnitude more features. Queries which selected 
tuples at five different area sizes were executed. The area sizes varied from 1.6 X 1.6 
degrees to 0. I X 0.1 degrees latitude/longitude. The use of the GAP-tree will make sure 
that the map does not contain gaps when omitting the less important area features. 

5.3. Results analysis 
The difference in response time between the Reactive-tree and the R-tree decreases 

when moving to smaller areas as the difference in the number of returned objects 
narrows. Tables 1 and 3 show the average number of returned objects for each method. 
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Table 1. Area sizes and the average number of returned objects in WDB 11. 
- - 

Area (in square degrees) 16 64 256 1024 

No index 16.2 45.9 244.2 1380.4 
R-tree 16.2 45.9 244.2 1380.4 
R-tree and BLG-tree 16.2 45.9 244.2 1380.4 
Reactive-tree and BLG-tree 10.7 23.8 67.0 257.6 

- - 

Table 2. Area sizes and the average response time in WDB 11. 

Area (in square degrees) 16 64 256 1024 

No index 205.5 21 1.2 230.8 348.8 
R-uee 3.4 7.0 27.0 143.5 
R-tree and BLG-tree 1.8 2.2 5.0 15.3 
Reactive-tree and BLG-tree 2.3 2.6 3.2 4.9 

Table 3. Area sizes and the average number of returned objects in DLMS DFAD. 

Area (in square degrees) 0.0 1 0.04 0.16 0.64 2.56 

No index 25.9 64.7 198.0 723.6 2262.3 
R-tree 25.9 64.7 198.0 723.6 2262.3 
R-tree and BLG-tree 25.9 64.7 198.0 723.6 2262.3 
GAPIReactive-tree and BLG-tree 25.9 52.8 43.6 55.8 48.7 

Table 4. Area sizes and the average response time in DLMS DFAD. 

Area (in square degrees) 0.01 0.04 0.16 0.64 2.56 

No index 113.8 117.7 127.1 183.4 378.7 
R-tree 6.6 10.2 19.0 80.5 285.8 
R-tree and BLG-tree 4.3 5.7 8. I 21.2 61.2 
GAPIReactive-tree and BLG-tree 5.4 6.9 7.5 9.7 7.3 

In a similar way, the BLG-tree is more effective when used in a large area search. 
In that case, a lot of polyline or polygon points can be omitted. 

All in all, the Reactive-tree in combination with the BLG-tree gives very good 
improvements. The process of selection and generalization results in a better map 
without too much detail. The selection could be done with the R-tree, but in that case 
a user should change the queries on every scale, in order to select only the desired 
objects. Also, the important objects would then be located at the leaf level in the tree 
just as the other objects, which would slow down the small-scale queries. Figures 10 
and 1 1  show the response times of the different methods, while tables 2 and 4 show 
the same information in tabular form. 

Using no index at all results in extremely long response times for data sets of the 
presented size even for relatively small query regions: 205 seconds for WDB 11 
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( 16 square degrees) and 1 13 seconds for DLMS DFAD (0.0 1 square degrees); see tables 
2 and 4. This is due to the fact that a sequential scan over the whole data set has to be 
performed. Using a spatial index structure enhances the performance for small query 
regions dramatically as can be seen in figures 10 and 11. 

For very small query regions, using the R-tree and BLG-tree, is even slightly more 
efficient than using the Reactive-tree and the BLG-tree. The reason for this is the small 
overhead in using a user-defined access method (Reactive-tree) instead of a Postgres 
build-in access method (R-tree). The differences are very small. However, the 
R-treelBLG-tree response times increase a lot when the query size region increases. 
This is caused by the large number of objects which do not need to be retrieved when 
using the Reactive-treelBLG-tree. This makes it possible to achieve more or less 
constant response times irrespective of the size of the query region: always less than 
5 seconds for WDB 11 and always less than 10 seconds for the DLMS DFAD. 

If geometrically close objects are guaranteed to be stored close together on disk, 
some extra speed may be gained. The Reactive-tree does not give such a guarantee, it 
depends on the inserting order, whether two geometrically close objects are also stored 
close on disk. Clustering can be used to improve this storage aspect. In Postgres, a 
simple kind of clustering can be easily simulated by retrieving the objects using a 
rectangle that contains all the objects. In fact, an access method scan is performed. When 
the objects are stored in a new relation in the retrieved order, geometrically close objects 
are stored close together on disk. This reduces the number of disk pages to be fetched 
for spatial queries and therefore the results will be returned faster. 
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6. Self-adjusting Reactive-tree 
In this section another type of Reactive-tree is presented: the self-adjusting 

Reacrive-tree. A drawback of the normal Reactive-tree, as presented in 2.2, is that there 
is one-to-one correspondence between the levels in the tree and the importance values. 
This is no problem if there is a hierarchical distribution of the data with respect to 
the importance values and when these values are properly numbered. However, in case 
the distribution is different, one would still'want the Reactive-tree to behave in an 
efficient manner. The same is true if the user decides only to use 'strangely' numbered 
importance values; e.g., 1, 10, 15, 50, and 900. The pseudo-roots may cause the tree 
to be underfull and badly balanced. 

The one-to-one correspondence between tree levels and importance values could 
be abandoned. It is then possible for objects of different importance to be stored in the 
same node (at the same tree level), as long as less important objects are never stored 
in nodes above more important objects. It might also be convenient to store objects of 
the same importance at different tree levels if this helps to get a well-filled and balanced 
tree. There are two ways in which this new object ordering may be carried out: 

- In a global manner: nowhere in the tree is a less important object allowed to 
be stored on a higher tree level'than a more important object. 

- In a local manner: if a node contains an object of a certain importance then the 
sub-tree below this node may not contain more important objects. 

It is not difficult to see that if the global ordering has to be satisfied, it is not always 
possible to get a well-filled (and.balanced) tree. For example, there may be a strange 
data distribution, such as: a largenumber of important objects to the left-hand side of 
the scene and a number of less important objects located to the far right-hand side. 
Objects which are spatially far apart should not be stored in the same sub-tree. However, 
if they are stored in different subtrees, then the less important objects would be stored 
too high unless there is a path of (nearly empty) pseudo-roots. 

Therefore, we abandoned the global ordering and tried to design a Reactive-tree 
which satisfies the less strict object ordering. In subsequent research we will carry out 
practical testing with both the normal Reactive-tree and the self-adjusting Reactive-tree 
for different data sets; both well and badly distributed. 

The self-adjusting Reactive-tree satisfies the following defining properties: 

I. For each object entry (MBR, imp-volue, object-id), .MBR is the smallest 
axes-parallel rectangle that geometrically contains the represented object of 
importance imp-value. The most important objects have the lowest importance 
values. 

2. For each tree entry (MBR, imp-value, child-pointer), MBR is the smallest 
axes-parallel rectangle that geometrically contains all rectangles in the child 
node and imp-vnlue is the importance of the child-node adequately decremented. 

3. All the nodes on the same level are in the same importance value range. This 
implies that it is not possible that a subtree contains object entries that are more 
important (lower importance value) than the object entries in the parent of this 
subtree. 

4. Every node contains between m( S Ml2) and M object entries andlor tree entries. 
5. The importance of the tree entries is less or equal to the importance value of the 

least important (highest importance value) object entry in every node. 
6.  The root contains at least two entries unless it is a leaf. 
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The fact that the empty tree satisfies these properties, and that the Insert and Delete 
algorithms (Schenkelaars 1992) do  not destroy them, guarantees that a self-adjusting 
Reactive-tree always exists. 

7. Conclusion 
After the Reactive-tree and BLG-tree, the GAP-tree forms a new important step 

towards the realization of an interactive multi-scale GIs .  It is now possible to 
interactively browse through large geographic data sets. In both the DLMS DFAD 
database (70000 features, 60Mb) and the WDB 11 database (38 000, 120 Mb) it is now 
possible to get map displays at any required scale in about five seconds. In the near 
future, more tests with datasets are planned; e.g., with the Topographic base map of 
The Netherlands. An interesting open question is how to assign importance values 
automatically to features when building the Reactive-tree for a new data set. 

A new reactive data structure is presented: the self-adjusting Reactive-tree, which 
should be even more effective. Future implementation and testing will have to confirm 
this expectation. Another question which still has to be answered is: When is it better 
to store the BLG-tree and when is computing a generalized line on the fly preferred? 
This is a matter of balancing CPU and disk speed. 

Further research is also required to determine how the GAP-tree can be maintained 
efficiently under edit operations. Additional further research topics are: the use of 
(dynamic) clustering techniques, and the design and implementation of other 
generalization techniques to support combination, symbolization, and displacement. 
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