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Abstract We determine the parameters of the semi-

empirical link between global temperature and global sea

level in a wide variety of ways, using different equations,

different data sets for temperature and sea level as well as

different statistical techniques. We then compare projec-

tions of all these different model versions (over 30) for a

moderate global warming scenario for the period

2000–2100. We find the projections are robust and are

mostly within ±20% of that obtained with the method of

Vermeer and Rahmstorf (Proc Natl Acad Sci USA

106:21527–21532, 2009), namely *1 m for the given

warming of 1.8�C. Lower projections are obtained only if

the correction for reservoir storage is ignored and/or the sea

level data set of Church and White (Surv Geophys, 2011) is

used. However, the latter provides an estimate of the base

temperature T0 that conflicts with the constraints from three

other data sets, in particular with proxy data showing stable

sea level over the period 1400–1800. Our new best-esti-

mate model, accounting also for groundwater pumping, is

very close to the model of Vermeer and Rahmstorf (Proc

Natl Acad Sci USA 106:21527–21532, 2009).

Keywords Ocean � Sea level � Global warming �
Projections

1 Introduction

In recent years, semi-empirical approaches for projecting

future sea level rise have been used by several authors

(Grinsted et al. 2009; Horton et al. 2008; Jevrejeva et al.

2009; Rahmstorf 2007b; Vermeer and Rahmstorf 2009).

The fundamental idea of these approaches is to exploit the

link between global sea level and global temperature in

past observational data for projecting the future. The

motivation behind this is the fact that more detailed

physics-based approaches to projecting sea level, using

explicit modeling of thermal expansion of ocean waters

and the ice loss of mountain glaciers and ice sheets, do not

yet adequately capture the complex physics involved. This

is seen e.g., by the mismatch of these models with past sea

level observations (Rahmstorf et al. 2007) and with the

observed accelerating ice sheet mass loss (Rignot et al.

2011). On the other hand, there is a close relationship

between past global sea level and temperature changes that

may continue to hold into the future and that may be used

to project sea level for a given warming scenario.

The form of this relationship is motivated by basic

physical considerations, whilst the parameters of the rela-

tionship can be determined from empirical data—hence the

term ‘‘semi-empirical’’. Several different versions of the

form of this relationship have been proposed (Grinsted

et al. 2009; Jevrejeva et al. 2009; Rahmstorf 2007b; Ver-

meer and Rahmstorf 2009). At the heart of all of these is

the concept that the rate of sea level rise will increase as

global temperatures go up, which in the simplest linear

approximation reads:

dH=dt ¼ a T tð Þ � T0ð Þ; ð1Þ

(Rahmstorf 2007b) where H is sea level, T is global tem-

perature and T0 is a baseline temperature at which sea level
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is stable. The central parameter is therefore the ‘‘sea level

sensitivity’’ a, which measures how much the rate of sea

level rise accelerates for a unit change in global tempera-

ture. To determine this parameter from data, the key issue

is therefore not how much sea level has risen in the past,

but how much the rate of rise has accelerated in step with

temperature changes. How well this correlation can be

constrained from uncertain sea level data is a critical issue

discussed in this paper. A good constraint on T0 is of prime

importance to determine a.

Vermeer and Rahmstorf (2009) have proposed a varia-

tion which they call the ‘‘dual model’’ by including a

second term to capture short-term variations:

dH=dt ¼ a T tð Þ � T0ð Þ þ b dT=dt; ð2Þ

They show that this greatly improves the fit to synthetic

(model-derived) data for short-term fluctuations in sea

level, e.g., those following volcanic eruptions.

Grinsted et al. (2009) have proposed a form which

explicitly takes into account that sea level will approach a

new equilibrium over a characteristic time scale s. If this

time scale is long compared to the period under consider-

ation (as in the ‘historical’ case favored by Grinsted et al.,

where the time scale found is *1200 years) then this

approach reduces to Eq. 1 (Rahmstorf 2007b). (Jevrejeva

et al. 2009) used a variation of this where sea level is

directly linked to radiative forcing, not to global

temperature.

Finally, Kemp et al. (2011) combine a finite response

time s with Eq. 2 and show that their sea level proxy data

are consistent with global temperature proxy data over the

past millennium, although a discrepancy is found for

500–1000 AD.

As a caveat it should be noted that a simple connection

between global sea level and global temperature can only

be expected for temperature changes related to global

forcings (e.g., greenhouse gases, solar luminosity) for

which different amplitudes of warming may, to first order,

have a similar spatial pattern (e.g., polar amplification,

greater changes over land than ocean). Such a link will not

hold for orbital forcing, which has a strong regional

expression with only a very weak global-mean signal. For

example, the sea level high stand during the Eemian

interglacial can be largely explained by the large increase

in local summer insolation causing the Greenland Ice Sheet

to retreat (Overpeck et al. 2006) and is not related to a

global mean warming relative to today, which was very

small (Montoya et al. 1998). Hence, paleoclimatic data

relating to the glacial-interglacial sea level changes are ill-

suited for constraining the sea level sensitivity to future

greenhouse gas forcing.

In the following we will systematically explore how

robust semi-empirical sea level projections are with respect

to the choice of data sets, the choice of analysis techniques

and various other assumptions.

2 Sea level data

We use three types of sea level data in this study: (1) proxy

data from salt marshes for the past millennium (Kemp et al.

2011), (2) tide gauge data from coastal stations in form of

various global compilations (Church and White 2006, 2011;

Jevrejeva et al. 2008), and (3) satellite altimeter data starting

from 1993 (Cazenave and Nerem 2004) (see Fig. 1). There is

a trade-off of temporal and spatial coverage: satellite

altimeter data give a near-complete global coverage (from

66�S to 66�N) but the record is too short to derive any

meaningful acceleration. Tide gauge data extend for over a

century (with coverage declining back in time) but cover

only coastal locations. The proxy data constrain acceleration

very well by reaching back to an extended period of stable

sea level, but they only come from a few locations.

The various tide-gauge based global mean sea-level

reconstructions differ with respect to the selection of gau-

ges, the correction for glacial isostatic adjustment (GIA),

the correction for changes in atmospheric pressure

(‘‘inverse barometer’’) and, most importantly, the method

for aggregating worldwide tide-gauges into a synthetic

global mean sea-level curve.

One problem to overcome when combining tide-gauge

data from around the world is to have a common vertical

datum. Gornitz and Lebedeff (1987) and Trupin and Wahr

(1990) (hereafter GL87 and TW90) address this issue by

applying a vertical offset to each tide-gauge equal to the

linear regression intercept, and then average the sea-level

curves directly. The approach is subject to errors in esti-

mating the linear trend (and therefore the vertical shift),

especially for short records. Instead, Holgate and Wood-

worth (2004) (HW04) and subsequent authors stack the rate

of change of sea-level to aggregate several stations which

allows many more stations to be included in the recon-

struction. The Jevrejeva et al. (2008) (JE08) dataset is built

with the ‘‘virtual station’’ technique (Jevrejeva et al. 2006),

which consists of recursively combining the two closest

tide gauges in a new, ‘‘virtual’’ station, located halfway

between the two original stations. The virtual station is

re-used as an actual tide gauge in the subsequent iteration

steps. As in HW04, regional sea-level curves are first

derived before combination into a global mean sea-level

time-series. The 1750–1800 section in JE08 consists of

only 3 tide gauges from the northern Atlantic that are

assumed to represent the global mean (after subtraction of a

long-term trend).

While the above reconstructions effectively compute

coastal sea-level rise and assume it to be representative of
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the global mean, Church and White (2006, 2011) (subse-

quently referred to as CW06 and CW11) combine tide-

gauge records into a global estimate by means of spatial

empirical orthogonal functions (EOF) derived from altim-

etry data. They assume that dominant modes of spatial sea

level variability obtained during the altimetry period (i.e.,

since 1993) are representative for earlier periods as well. If

this assumption holds, the technique does a better job at

capturing global sea level variability than simple averaging

of tide gauge records. As a result, the global mean sea-level

reconstructions making use of the EOF technique are typ-

ically smoother than other reconstructions. The main dif-

ference between CW06 and the CW11 update is the length

of the altimetry time-series used to compute the EOF, and

an extended number of tide-gauges. Further details on the

datasets can be found in the original references.

Finally, we use the proxy data of Kemp et al. (2011) for

the last millennium, which is to date the best available data

set going back so far in time. The main drawback is that

this proxy reconstruction stems from just two sites in North

Carolina and is thus just a local record for the western

North Atlantic. Kemp et al. estimate in detail how far this

can deviate from global sea level variations through vari-

ous physical processes; they conclude that this record

should be representative of global-mean sea level varia-

tions to within ±10 cm. On the time scales resolved by the

proxies, it agrees with the reconstruction of global-mean

sea level by (Jevrejeva et al. 2008) since 1700 AD every-

where to within ±6 cm (Kemp et al. 2011).

The proxy data have lower time resolution and larger

uncertainty than the other data, but they go back much further

in time. The latter makes them uniquely useful for con-

straining T0 in Eq. 1, since the proxy data show an extended

period of 400 years of stable sea level, from 1400 to 1800

AD. Even if there were a sea level trend of plus or minus

10 cm over this period (which could be accommodated

within data uncertainty), this would constrain the average

rate of sea level rise to within 100 mm/400 years

= ±0.25 mm/year. For a typical value of a = 0.3 cm/year/

K (see (Rahmstorf 2007b) in Eq. 1, this constrains T0 to

within at most ±0.08 K, which is less than the uncertainty in

the proxy temperatures for 1400–1800 AD. Hence the

uncertainty in the temperature proxies, rather than in the sea

level reconstruction, is the limiting factor in using the proxy

data to constrain the sea level acceleration.

3 Short-term variability

We start by looking at the short-term variations in the rate

of sea level rise found in the tide gauge data. Figure 2

shows the decadal linear rates of sea level rise and dem-

onstrates the well-known fact that the derivative of ‘noisy’

data is invariably much more noisy. It is apparent that the

peaks and troughs of the decadal rate of rise are to a large

extent inconsistent between different data sets, most evi-

dently in their amplitude but also in their timing. In some

time intervals data sets even disagree over the sign (rising

or falling sea level). Much of the short-term ups and downs

in the rate of sea level rise thus cannot be considered a

feature of the real global mean sea level but must be some

data limitation, most likely due to regional sea level vari-

ability which is insufficiently sampled to compute a correct

global average. This conclusion is supported by tests with

surrogate data from a climate model made to investigate

how well changes in global sea level can be reconstructed

from a limited number of tide gauges along coasts and

islands (Christiansen et al. 2010). This study concludes that

spurious inter-annual variability is a major problem of such

reconstructions, regardless of the reconstruction method.

This is supported by the smaller inter-annual variability in

the altimeter data as seen in Fig. 1. It is further supported

by a recent inter-comparison of tide gauge and altimeter

data (Prandi et al. 2009), although that study focused on

interannual variability rather than decadal trends. The fact

that some coherence is seen between the various tide gauge

data sets shown in Fig. 2 will be to some extent due to

these reconstructions partly using the same input data,
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Fig. 1 A collection of different sea level data sets, shown from 1850

with an arbitrary vertical offset for clarity. Legend: CW06,

CW11 = Church and White 2006, 2011; JE08 = Jevrejeva et al.

2008: HW04 = Holgate and Woodworth 2004; TW90 = Trupin and

Wahr 1990; GL87 = Gornitz and Lebedeff 1987. In this paper we use

the top three long series (CW06, CW11, JE08) for further analysis.

The dashed grey line is a quadratic fit to the CW06 data, shown here

merely to help the eye in the comparison of the data sets. Note the

visibly smaller inter-annual variability in the altimeter data. All series

shown are already corrected for glacial isostatic adjustment
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while to some extent it may also reflect true decadal

variations in global mean sea level.

A discrepancy between tide gauge compilations and the

true global mean is not surprising considering the physics.

Even in a situation of constant global mean sea level (i.e.,

conserved total ocean water volume), changes at individual

tide gauge stations arise due to the ocean water moving

around under the influence of winds or tides. There is no

guarantee that at a limited number of tide gauge stations

along coastlines such volume-conserving ocean motions

would average out to zero. In other words, a network of

tide gauge stations can falsely register seemingly global sea

level variations, which are caused by physical processes

(i.e., water motions) which in reality cannot cause any

global sea level changes.

We illustrate the effect of ‘noise’ in the sea level data with

an example of a synthetic sea level time series, consisting of a

smooth sea level rise plus artificial noise generated with a

random number generator (Fig. 3). The noise has a standard

deviation of only 5 mm and is slightly auto-correlated (zero

crossing of the lagged covariance at 3.5 years lag). The

properties of the smooth function and of the noise are chosen

to resemble the data of Church and White (2006) (i.e., the

smooth curve shown is low-pass-filtered CW06 data, and the

noise has the same standard deviation and similar lagged

covariance as the residuals of the CW06 data). The figure

illustrates that even such a small amount of noise in the data,

as it is expected from under-sampling due to the limited

number of gauges, obscures the signal when looking at

decadal rates of rise (bottom panel). For their tide-gauge

based annual reconstruction, Church and White (2011)

estimate a one-standard-deviation uncertainty (as compared

to the true global mean) ranging from ±25 mm in the year

1880 to a minimum of ±6 mm in 1988, so the sampling error

alone is large enough to explain the observed variability in

decadal sea level trends.

From the above analysis it is clear that statements like

‘‘the two highest decadal rates of change were recorded in

the decades centred on 1980 (5.31 mm/year) and 1939

(4.68 mm/year)’’ (Holgate 2007) are a discussion of sam-

pling noise, not of a meaningful global-mean signal. The

large variations in decadal trends have also been used by

Houston and Dean (2011) to question whether the rela-

tively high satellite sea level trend reveals acceleration

over the mean twentieth century rate or merely just another

decadal peak, as one might at first sight conclude from

Fig. 2. However, such a comparison is not valid given that

the peaks and troughs in the decadal tide gauge trends are

largely an artifact of inadequate spatial sampling, a prob-

lem which does not apply to the altimeter data.

The main conclusion of this section is that the sea level

data contain short-term (interannual to decadal) noise that

is physically unrelated to the climate signal we want to

extract from those data. Hence, it will be useful to filter the

data with a low-pass filter in order to improve the signal-to-

noise ratio in the analysis (as e.g., in (Rahmstorf 2007b).
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Fig. 2 Decadal trends (i.e., least-square linear trends for overlapping

10-year intervals) for the tide gauge and altimetry data shown in

Fig. 1
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Fig. 3 Top: A synthetic sea level time series (blue) consisting of a

smooth function (grey, a smooth fit to the CW06 data) plus added

random noise with 5 mm standard deviation (green). Bottom: Linear

trends in the blue sea level curve for overlapping 10-year periods

(red). The grey line shows the true signal, i.e., the rate of sea level rise

from the smooth curve. Despite this signal of a fourfold acceleration,

the noise leads to the maximum decadal rate being observed in the

1940s in this example
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Alternatively, regression can be performed on sea level

H itself rather than on dH/dt, which also effectively filters

out short-term noise. This approach naturally exploits the

fact that undersampling of regional variability may cause

large fluctuations in dH/dt but only much lesser ones in H,

because the character of the undersampling is that it causes

spurious variability around the true global mean sea level

evolution. Both methods, filtering and regression on H, will

be tested and discussed below.

4 Analysis method

In the following we will generate a large number of sea

level projections using a range of different input data sets

and assumptions in the analysis, in order to test how sen-

sitive the projections are to various aspects of the analysis

method. We start by producing a whole range of sea level

model versions to compute sea level from global temper-

ature, each based on a different fit to past sea level data.

We then use only two future global temperature scenarios

to drive projections with each model version, since this

paper focuses on and isolates the uncertainties inherent in

projecting sea level from temperature, rather than the

uncertainty in projecting future temperatures from emis-

sions. For a full emissions scenario analysis, these two

independent types of uncertainty need to be suitably

combined e.g., by adding them in quadrature.

To drive the future projections we primarily chose a

medium warming scenario which is characterised by a global

temperature rise of 1.8�C between the years 2000 and 2100

and a corresponding sea level rise of *1 meter during this

period. This is based on the RCP 4.5 emissions scenario

(Moss et al. 2010), a moderate scenario leading to a radiative

forcing of 4.5 W/m2 by 2100, which resembles SRES B1

used in the IPCC 4th Assessment Report. As additional test

we also used the RCP 8.5 emissions scenario, a high scenario

leading to a radiative forcing of[8.5 W/m2 by 2100, which

resembles SRES A1FI. In both cases we use the best tem-

perature estimate computed using the same model as

Meinshausen et al. (2009) and shown in Fig. 4.

Once suitable temperature and sea level data sets were

selected, the following analysis steps were performed:

• The temperature time-series is smoothed using the

SSAtrend filter of Moore et al. (2005) with 15-year

half-width (embedding dimension), to keep only the

low-frequency variability. The sea-level time-series is

not smoothed.

• A generalized least square (GLS) estimation is then

performed on the integral form of Eq. 2. This method

accounts for correlation between residuals and there-

fore yields a better estimate of the model parameters,

especially of their uncertainty, provided that the error

covariance matrix (or its structure) is known. For each

dataset, an analysis of the residuals is performed to

determine an appropriate error model whose parameters

are then chosen using a maximum likelihood approach

(see details below). For the hindcast, we sample one set

of parameters from the full covariance matrix of the

model coefficients (obtained by inverting the Hessian

matrix of the likelihood function at the maximum),

including the error parameters, and make a determin-

istic temperature-based prediction with added random

noise (based on the particular error structure). This

operation is repeated 1,000 times to obtain reasonable

estimates of the 90% (i.e., 5–95 percentile) envelope.

• For the projections to the year 2100, the same approach is

taken but only uncertainty in the model parameters is

considered. This is because we are only interested in the

change in the mean sea-level, not its interannual

variability (for an estimation of which the semi-empirical

model is neither designed nor suitable). Note that random

variations around the mean projection would add a few

centimeters uncertainty, but this effect is less and less

significant as large sea level changes are considered, as is

the case for projections to the year 2100.

In general, the error can be viewed as the sum of an

observational error (inaccurate representation of global

mean sea-level from aggregation of tide gauges) and a

model error (short-coming of the semi-empirical model to

represent global sea-level on a yearly time-scale). While

the covariance matrix of the observational error should be

provided with the data, the covariance matrix of the model

error has to be estimated to best describe the residuals. In
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Fig. 4 Temperature scenarios, based on the RCP 4.5 and RCP 8.5

emissions scenarios, used in forcing the sea level projections

(including a hindcast for 1900–2000, which is shown for illustrative

purposes but not analysed further)
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practice, the full covariance matrix is available only for the

JE08 data (Grinsted et al. 2009). For this dataset the

observational error is much larger than the regression

residuals, hence we consider only the observational error as

representative of the total error (omitting the observational

errors’ covariance matrix, or considering only uncorrelated

variance, decreases the maximum likelihood of the fit). For

CW06 and CW11, the observational error is smaller and

much more homogeneous in time (because of the improved

spatial representation technique and the shorter time span)

and its correlation structure is not available. We have

therefore constructed a covariance matrix based on the

analysis of the residuals only. In both cases, the residuals

are consistent with an AR1 process based on a visual

analysis of the empirical auto-correlation and partial auto-

correlation functions, and AR1 is preferred over an AR2

process based on the Akaike Information Criterion for

small samples (AICc) (Akaike 1974)).

The likelihood function depends on the model residuals

r and the (estimated or a priori) covariance matrix R. For

computational reasons, its logarithm is considered:

lnðLikÞ ¼ � 1

2
lnð 2pRj jÞ þ r0R�1r
� �

ð3Þ

where |.| and 0 represents the determinant and transpose

operators, respectively. The residual r is given by r =

Y-Xb, with Y the vector of observations, X the matrix of

predictors, and b the vector of model parameters from Eq.

2. The covariance matrix R describes the multivariate

Gaussian law of the residuals, which is parameterized in

the case of an AR1 process as R(i,j) = r2q|i-j|, where r2 is

the variance, q the auto-correlation between residuals, and

(i, j) the time indices of the residuals. The maximum

likelihood estimate therefore consists in optimizing both

the model parameters b and the error parameters r2 and q.

If the covariance matrix is known, the solution is given by

the GLS estimator:

b ¼ ðX0R�1XÞ�1X0R�1Y ð4Þ

Using Eq. 4, the log-likelihood function (3) can therefore

be expressed as a function of the two error parameters r2

and q only. The solution (b, r2, q) was obtained by max-

imizing the 2-parameter problem in Matlab with the

function fmincon using the interior-point algorithm, while

updating b at each iteration according to Eq. 4. It was

checked that the final solution does not depend on the

initial value of r2 and q—the same global optimum is

always found when trying 100 randomly chosen initial

values.

Note that very similar results are obtained with an

ordinary least-squares fit (OLS), but parameter uncertainty

is underestimated due to correlation in the residuals

(Fig. 9). Very similar results are also obtained with various

other error models that we tried, and with the uncertainty

estimation originally used by Vermeer and Rahmstorf

(2009).

In addition to this default approach, several sensitivity

tests were performed with respect to smoothing and input

data, as described below.

Figures 5 and 6 show the resulting fit for sea level (left

column) and for the rate of sea level rise (right column) for

the tide gauge data, for the simple (i.e., Eq. 1) and the dual

(i.e., Eq. 2) models, respectively. Note that in all cases the

rate of sea level rise increases strongly over time super-

imposed with some multi-decadal variations, and that this

evolution correlates well with global temperature. We see

that the simple model reproduces the changes in rate of sea

level rise on the long time scales, whereas the dual model

in addition captures the multi-decadal variability much

better, e.g., that seen from 1700 onwards in the JE08 data

(bottom panel). The amplitude of the multi-decadal sea

level variations in the JE08 data is somewhat larger than

what is explained by the temperature variations (grey

range), but it is also larger than that in the other sea level

reconstructions and could be exaggerated as the recon-

struction method does not account for water redistribution

between coastal and open ocean areas. Note that the

observational errors’ covariance matrix provided by Grin-

sted et al. (2009) attempts to describe the possible devia-

tions between North Atlantic tide-gauges and global mean

sea-level in the early part of the record, where data are only

available from the North Atlantic. The approximately

±10 cm found statistically by Grinsted et al. is consistent

with the physics-based estimate of Kemp et al. (2011).

Note that when confining the analyses to the period from

1930 onwards, one starts with a relative maximum in the

rate of sea level rise and a subsequent decline, so no sig-

nificant acceleration of sea level rise is found over this

period (Houston and Dean 2011). As Fig. 6 shows, this

time evolution correlates well with the global temperature

evolution with its well-known plateau in the mid-twentieth

century. The lack of acceleration during this time interval

thus does not call into question the proposed link of sea

level rise and global temperature, but rather confirms it,

since the semi-empirical models in fact predict a lack of

acceleration since 1930 (Rahmstorf and Vermeer 2011).

In addition to the three tide-gauge data sets we also use

the proxy data of Kemp et al. (2011). For these, we use the

parameter fit for 1000–2000 AD obtained by Bayesian

analysis as described in that paper and shown in Fig. 7. For

500–1000 AD, the model fails since warm proxy temper-

atures then suggest strong sea level rise, while the sea level

proxies show a flat sea level. There are three possible

explanations for this discrepancy: (i) a bias in the proxy

temperatures, (ii) an erroneous trend in the sea level data,

and (iii) inadequacy of the model. Regarding option (iii), it
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is important to realise that then any simple and plausible

model linking the rate of sea level rise to temperature

changes would fail in this situation: the proxy data show a

clear downward step in temperature between 1000 and

1100 AD, with temperatures in the following centuries

*0.2�C cooler than in the preceding centuries, but the

proxy rate of sea level rise remains unchanged. The basic

idea that a change in global temperature leads to a change in

the rate of sea-level rise would have to be invalid around

1100 AD, although it holds well during the following nine

centuries. The right panel of Fig. 7 shows this clearly; note

that the model-predicted rate of rise (black curve) there
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Fig. 5 Fit of the simple model

to three tide gauge data sets.

Grey curves and ranges show

the prediction of Eq. 1 when the

GISS global temperature data

are used as driver; colored

curves the actual sea level data.

The grey range shows the

uncertainty arising from the

parameter fit as a 90%

confidence interval (5–95

percentile), while the dashed
lines represent the full annual

uncertainty including the

random error. Note that the sea

level data shown are adjusted

for reservoir storage according

to Chao et al. (2008) and for

groundwater pumping according

to Konikow (2011) (see Sect. 7)

to obtain the climatic sea level

rise
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Fig. 6 Fit of the dual model to

three tide gauge data sets. Grey
curves and ranges show the

prediction of Eq. 2 when the

GISS global temperature data

are used as driver; colored

curves the actual sea level data.

The grey range shows the

uncertainty arising from the

parameter fit as a 90%

confidence interval (5–95

percentile), while the dashed
lines represent the full annual

uncertainty including the

random error. Note that the sea

level data shown are adjusted

for reservoir storage according

to Chao et al. (2008) and for

groundwater pumping according

to Konikow (2011) (see Sect. 7)

to obtain the climatic sea level

rise
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closely resembles the temperature proxy curve used.

Regarding option (ii), we consider this unlikely since the sea-

level error would have to be several times larger than the stated

uncertainty of the reconstruction, and none of the other

available reconstructions (as shown in Fig. 3 of Kemp et al.

(2011)) show such a rise up to the year 1100 AD. Finally,

regarding option (i), as shown by Kemp et al. a bias of only

0.2�C would suffice to explain the discrepancy, which is well

within the expected overall uncertainty of the temperature

reconstruction. An alternative global reconstruction with the

CPS method, also presented by Mann et al. (2008), is on

average 0.26�C cooler during 500–1000 AD than the recon-

struction with the EIV method used here. We used the latter

because only it covers land and ocean, whilst the CPS

reconstruction is for land only. However, after 1100 AD these

two temperature reconstructions agree well and we find it

highly unlikely that the discrepancy before 1100 AD is due to

a real difference between land and ocean anomalies. In the

EIV reconstruction, temperature during 500–1000 AD is

0.19�C warmer than during 1100–1400 AD (this is the cooling

step that causes the discrepancy), but in the CPS reconstruc-

tion temperature during 500–1000 AD is 0.05�C cooler than

during 1100–1400 AD. We cannot think of a mechanism that

would simultaneously warm the land but cool the oceans, so

we interpret this discrepancy as indicative of uncertainties in

the temperature reconstruction before 1100 AD, most likely

due to the sparseness of data at this time. Hence, the most

likely explanation of the discrepancy before 1000 AD shown

in Fig. 7 is too-warm proxy temperatures, and therefore we

use only the data of the last millennium to fit the model.

The Bayesian analysis of Kemp et al. (2011) results not in

a single parameter set but in an ensemble of models, the

projections of which are weighted based on their statistical

likelihood. This automatically produces uncertainty ranges

for the future projections. However, the average of the

Bayesian ensemble (representing our best estimate) can

be well described by the single ‘illustrative’ parameter

set a = a1 ? a2 = 5.6 mm/year/�C, b = -48 mm/�C,

T0 = -0.41�C, very close to the values obtained by Vermeer

and Rahmstorf (2009) for the CW06 data. (Note that T0

varies slowly with time in this case, with a characteristic time

scale of 520 years, and the number given is the mean for

1880–2000. This variation is mathematically equivalent to

the time scale s introduced by Grinsted et al. (2009) as dis-

cussed in the Introduction; for details we refer the reader to

Kemp et al. (2011)).

5 Sensitivity to choice of input data

Since the semi-empirical relationship was put forth in 2007

(Rahmstorf 2007b), several new global sea level data sets

have been published (Church and White 2011; Jevrejeva

et al. 2008; Kemp et al. 2011). We therefore investigate

how sensitive projections of sea level rise for the period

2000–2100 are to the choice of input data set. We perform

the calibration of the model parameters for each of the four

sea level data sets as described in the previous section, with

the additional twist that we alternately use the HadCRUT

and GISS global temperature data in each of the tide gauge

cases. For the proxy data, the two different versions cor-

respond to the standard and a loose Bayesian constraint on

the prior. In the standard case the prior distributions of the

a and b parameters are taken from Vermeer and Rahmstorf

(2009) in order to include tide-gauge information, while in

the loose case the prior uncertainty in a and T0 is enlarged

by a factor of 10 (and b, which is ill constrained and

confounded with a using only proxy data, is set to zero in

the simple model and to the best estimate of VR09 in the

dual model), making the fit practically ignorant of the tide-

gauge data. For comparison with the earlier publication, we

also show the projection with the same method as used by

Vermeer and Rahmstorf (2009).

All in all we obtain 9 different sea level projections as

shown in Fig. 8. These results are also summarised, toge-

ther with the other sensitivity experiments discussed below,

in Fig. 9, and all parameter values and regression diag-

nostics are provided in Table 1.
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Fig. 7 Sea level proxy data (dark green) and semi-empirical model

fit (black with grey range) for 500–2000 AD, following Kemp et al.

(2011). The base period for the sea-level curve is 1400–1800. The

dashed line in the data indicate an uncertainty of ±6 cm, and the grey

range for the model fit indicates the 68% uncertainty range, based on

a Bayesian analysis. Note that the proxy data only record slow

variations
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We find that 7 of these 9 projections are remarkably

close together, within ±10 cm (mean values). This is

despite rather different values of a and b found for the JE08

data as compared to the others. The reason here is the

larger range of variability in the JE08 data which gives

more weight to the b-term. However, this is compensated

for in the a-term to give approximately the same overall

twentieth century and twentyfirst century rise as in the

other data sets. To understand this it should be realised that

in case of a temperature rise that is exponential in time,

T * dT/dt and there is no distinction between the a-term

and the b-term in Eq. 2. The b-term thus only measures

deviations from a general exponential-type warming, i.e.,

the multi-decadal temperature variability seen in Fig. 6f.

For the future response, the a- and b-terms can partly

cancel to give a similar projection, as long as the warming

scenario is approximately of exponential shape. Note that

the RCP 4.5 temperature scenario used here (Fig. 4)

involves a slowing down of the warming during the last

30 years; it is thus not an exponential rise and therefore

distinguishes between the a- and b-terms. Larger differ-

ences for different combinations of a and b will arise for

more complex temperature scenarios, e.g., those with a

peaking and subsequent decline in global temperature.

Scenarios with a greater, unmitigated global warming (like

RCP 8.5) will be closer to exponential shape and hence less

sensitive to this.

The remarkable agreement between these seven pro-

jections is due to the very similar values of T0 obtained in

each case. T0 sets the baseline temperature (here given

relative to the mean temperature for 1951–1980) at which

sea level is stable. Once this baseline is fixed, the overall

observed sea level rise as compared to the overall warming

tightly constrain the sensitivity of sea level to temperature

and hence the future sea level projection. It is clear that the
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Fig. 8 Sea level hindcasts and projections driven by the temperature

scenario shown in Fig. 4 for different models calibrated with different

temperature and sea level data. The error bars on the right indicate

90% confidence intervals (5–95 percentile, using the GISS temper-

ature dataset); for the proxy-based projection the uncertainty is as

presented in Kemp et al. (2011)
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data sets going back further in time, to a period of stable

sea level (Jevrejeva et al. 2008; Kemp et al. 2011), are

suited best to constrain T0, since for the shorter data sets T0

is an extrapolated value outside the actual data range.

A notably lower estimate of T0 is the main reason for the

lower projections resulting from the CW11 data. A lower

T0 implies a smaller a and lesser modern acceleration of

sea level rise compared to the other three data sets.

We argue that the projections based on the CW11 data

are less plausible than the others. When comparing only the

CW11 data with the older CW06 data, we note that the

differences between them are not statistically significant

Table 1 Parameter values for the semi-empirical model according to the Eqs. 1 and 2, for each of the sensitivity cases explored in Fig. 9

a (mm/year/�C) b
(mm/�C)

To

(�C)

r
(mm or mm/year*)

q logLik AICc

CW06

Default 5.6(0.4) 266(16) 20.43(0.05) 5.2 0.49 -76 165

Simple 4.5(0.4) – -0.44(0.05) 6.2 0.64 -82 175

VR09 5.6(0.4) -47(5) -0.43(0.04) 0.1* – –

OLS 5.6(0.2) -66(9) -0.43(0.03) 5.2 – -93 197

HadCRU temp 5.3(0.6) -26(19) -0.40(0.07) 6.4 0.65 -94 200

Smooth 5 5.0(0.4) -27(13) -0.42(0.05) 5.6 0.56 -80 173

Smooth 10 5.3(0.4) -50(15) -0.43(0.05) 5.3 0.52 -78 168

Smooth adaptive 5.4(0.3) -52(12) -0.42(0.04) 5.1 0.47 -75 162

No land–water corr. 4.4(0.5) -62(19) -0.48(0.07) 5.7 0.58 -79 172

Chao ? Wada 5.1(0.4) -68(16) -0.42(0.05) 5.3 0.51 -77 166

Chao only 6.0(0.4) -64(15) -0.42(0.04) 5.1 0.48 -75 163

CW11

Default 3.7(0.4) -50(15) -0.59(0.08) 5.4 0.44 -89 191

Simple 2.7(0.3) – -0.68(0.07) 5.9 0.55 -94 198

VR09 3.4(0.5) -40(14) -0.65(0.11) 0.2* – – –

OLS 3.6(0.2) -50(9) -0.59(0.05) 5.4 – -103 217

HadCRU temp 3.6(0.4) -39(13) -0.58(0.09) 5.5 0.47 -89 192

Smooth 5 3.1(0.3) -22(12) -0.62(0.09) 5.7 0.50 -92 197

Smooth 10 3.4(0.3) -38(14) -0.60(0.08) 5.5 0.47 -90 193

Smooth adaptive 3.5(0.3) -42(12) -0.60(0.07) 5.3 0.44 -89 190

No land–water corr. 2.7(0.3) -39(14) -0.71(0.12) 5.3 0.42 -88 190

Chao ? Wada 3.2(0.3) -52(14) -0.60(0.09) 5.3 0.44 -89 190

Chao only 4.1(0.4) -48(15) -0.56(0.07) 5.4 0.45 -89 192

JE08

Default 6.6(0.8) -98(42) -0.43(0.10) – – -595 1,198

Simple 5.2(0.6) – -0.43(0.07) – – -598 1,202

VR09 5.8(0.9) -67(40) -0.47(0.12) 0.7* – – –

OLS 7.3(0.4) -161(27) -0.45(0.05) 23.8 - -692 1,394

HadCRU temp 6.6(0.8) -94(38) -0.43(0.10) – – -595 1,198

Smooth 5 5.2(0.7) 9(24) -0.42(0.09) – – -597 1,203

Smooth 10 5.9(0.8) -5(34) -0.42(0.09) – – -597 1,202

Smooth adaptive 6.6(0.8) -10(34) -0.42(0.08) – – -593 1,195

No land–water corr. 6.0(0.8) -97(42) -0.44(0.11) – – -597 1,201

Chao ? Wada 6.3(0.8) -10(42) -0.42(0.10) – – -595 1,199

Chao only 6.9(0.8) -96(42) -0.43(0.09) – – -595 1,198

The preferred parameter set is shown in bold. T0 is given relative to the mean temperature for 1951–1980. For Church and White (2006) (CW06)

and Church and White (2011) (CW11), there are two additional parameters for the AR1 error model: r stands for the standard deviation

(*indicates units of mm/year, otherwise expressed in mm) and q for the auto-correlation parameter. For the Jevrejeva et al. (2008) dataset, the

observational error’s covariance matrix is used unchanged (without further scaling). The log-likelihood (logLik) values and Akaike Information

Criteria for small samples (AICc) are also shown, except for VR09 which uses a different estimation technique (Vermeer and Rahmstorf 2009)
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given the reconstruction uncertainty (according to Church

and White (2011)). However, the agreement of CW06 with

the two longer data sets, in particular with respect to the

value of T0 constrained well by the latter (Fig. 9), makes

the fit to CW06 more plausible. In addition the dual model

fit is better for CW06 than for CW11 (especially for the last

four decades, Fig. 6), with much smaller residuals. The

statistical analysis performed in Vermeer and Rahmstorf

(2009) suggests this is significant and very unlikely to be

just a chance agreement.

6 Sensitivity to data smoothing

For the simple model Eq. 1, the best-fitting parameters

found are only minimally affected by smoothing. Using the

unsmoothed raw data in the integral form of Eq. 1, the

parameter values (a, T0) of (3.5 mm/year/�C,-0.49�C) are

obtained, as compared to (3.4 mm/year/�C, -0.50�C)

reported by R07 (without reservoir storage correction).

For the dual model there is a more significant parameter

dependence on smoothing, because the b-term is a fast-

response term which will be fitted increasingly to short-

term variability if that is included in the analysis. This in

turn affects also the value of a, due to the trade-off between

a and b discussed earlier. Rahmstorf (2007b) and Vermeer

and Rahmstorf (2009) used the SSAtrend filter with an

‘embedding dimension’ of 15 years (the ‘embedding

dimension’ of the filter corresponds to its half-width) to

smooth both temperature and sea level data. Rather than

filtering the sea level data, in this paper we use an alter-

native as the default procedure, namely obtaining the

parameters from the best fit to the sea level curve itself,

rather than the rate of rise. The sea level curve is of course

the primary quantity we are interested in, and it is also the

quantity that is measured. It is inherently less noisy than

the rate of rise. Using this procedure is simpler and requires

no prior filtering of sea level data (the predictand) but only

the temperature data (the predictor), as is common in sta-

tistical models.

Figure 10 shows the dependence of the model fit on this

filter time scale. We consider the low smoothing values

(\10 years half-width) as unrealistic, since the b-term is

then fitted largely to short-term noise for which global

temperature and sea level do not correlate (hence b goes to

zero). High values ([20 years half-width) on the other

hand start to smooth away important parts of the signal,

considering that the major part of anthropogenic warming

only started around 1980.

As may be expected, we find some compensating

changes in a and b but practically no variation in T0, the

model parameter that is measurable and has a direct

physical meaning. For all filter widths, the sea level

projections for 2100 remain within ±4 cm. We also tried

the adaptive smoother of Mann (2004), which gives very

similar results as the SSAtrend filter (Fig. 9).

7 Reservoir storage and groundwater pumping

Not all sea level changes are related to current climate

changes. There are also solid-earth processes causing glo-

bal-mean sea level change. In the modern era this effect is

estimated as a downward trend of -0.3 mm/year due to an

enlargement of the global ocean basins associated with

glacial isostatic adjustment (GIA). This term is routinely

subtracted from sea level data in order to obtain the ‘‘GIA-

adjusted’’ sea level, which thus shows a slightly larger rise.

This is a minor issue for semi-empirical projections since it

is a small constant trend, so it does not affect estimates of

the sea level sensitivity a, which only depend on changes

in the trend. When using tide gauge data, local land

movement at the sites of the gauges also needs to be cor-

rected for.

Another non-climatic effect is sea level change due to

direct anthropogenic changes in water storage on land.

Both the building of artificial reservoirs (which lowers sea

level) and the pumping of groundwater for irrigation pur-

poses (which raises sea level) are time-varying contribu-

tions to sea level change which need to be removed from

the data in order to isolate the climate-related sea level rise.
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Fig. 10 Dependence of the model fit and projections on the half-

width of the filter used to smooth the global temperature data. Note

that sea level data are not smoothed at all in the ‘default’ case
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Vermeer and Rahmstorf (2009) removed the reservoir

storage effect as estimated by Chao et al. (2008), and they

performed a sensitivity analysis for groundwater pumping

since no time-dependent estimate for this was available at

the time. In the meantime, two estimates of groundwater

pumping have been put forth by Wada et al. (2010) and

Konikow (2011), although the time series do not cover our

full data period. To extend the range, we use the conclusion

of Shiklomanov and Rodda (2003) that groundwater

extraction for irrigation purposes approximately increases

in proportion to global population. We fit the Wada et al.

(2010) and Konikow (2011) groundwater extraction data to

the global population curve and use these fits to estimate

groundwater extraction both for the past and the future

(Fig. 11). In the case labelled ‘default’ in Figs. 9 and 12

and Table 1, the sea level data were adjusted on the basis

of the Chao et al. (2008) and Konikow (2011) data.

Including groundwater pumping has only a small influ-

ence on sea level projections (see Fig. 9), in agreement

with the conclusions from the sensitivity study of Vermeer

and Rahmstorf (2009). The reason for this is that it is not

just the magnitude which counts, but also how well it

correlates with temperature in the past. Even a large sea

level contribution that correlates poorly with temperature

will not strongly affect our estimate of the sea level sen-

sitivity to temperature changes. The dam building correc-

tion, in contrast, coincides with late-twentieth century

warming and has therefore a larger impact on the parameter

estimation and the projections. Also, future groundwater

extraction adds up to 10 cm to sea-level rise by 2100 (if

Wada et al.’s (2010) large present-day estimation is cor-

rect); so the ongoing and growing groundwater mining

automatically compensates some of the lowering impact of

this correction term on the projections. Our assumption of

groundwater mining increasing in proportion with the

central UN population scenario is probably conservative, as

the use of irrigation in agriculture could increase even more

due to increasing affluence, increasing drought problems

due to climate change and increased bio-energy production.

8 A scenario with greater warming

We repeated the projections with a temperature scenario

based on the RCP 8.5 emissions scenario, to test the pro-

jection robustness under greater warming. Figure 12 shows

a summary diagram that can be compared to Fig. 9. The

projections are naturally higher, but the general pattern is

similar. For the CW06 data, the projections remain within

±8 cm (mean values) except for the case without any land–

water correction. For the JE08 data the spread is somewhat

larger, the sensitivity to land–water storage smaller, but

overall the numbers are similar to those obtained with the

CW06 data. The projections with the CW11 data are again

significantly lower than the others. This difference is

amplified for greater warming, since the sea level sensi-

tivity to warming is found to be less from the CW11 data,

as discussed above.

9 Simple estimates with reduced data input

As a simple back-of-envelope estimate of the sea level

sensitivity a, we can use the Kemp et al. proxy data solely

exploiting the fact that sea level was nearly stable during

1400–1800 AD, in combination with the twentieth century

rate of rise. The global-mean temperature difference

between these two time periods is (T-T0) = 0.32�C (Mann

et al. 2008), whilst the rate of sea level rise for 1900-2000

from tide gauge data is 1.7 ± 0.5 mm/year (IPCC 2007).

From Eq. 1 this yields a sea level sensitivity a of

5.3 ± 1.6 mm/year/�C. With this, our RCP 4.5 temperature

curve gives a sea level rise of 97 ± 29 cm for 2000–2100.

Alternatively we can use the recent rate of rise for

1993–2010 as determined by satellite altimeter data. The

global-mean temperature difference between 1993 and

2010 versus 1400–1800 is (T–T0) = 0.79�C (Mann et al.

2008), whilst the rate of sea level rise for 1993–2010 in the

altimeter data is 3.2 ± 0.4 mm/year (Church and White

2011). From Eq. 1 this yields a sea level sensitivity of
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Fig. 11 The groundwater pumping scenarios used in this study. It is

assumed that the amount of groundwater pumping is proportional to

the world population. The constant of proportionality is chosen to fit

the data (dots) of Wada et al. (2010) and Konikow (2011), with for the

latter case the additional constraint that the groundwater depletion is

zero in 1850. The dashed line shows the extrapolation toward the

future for groundwater extraction, based on the central UN population

scenario. Dam building is assumed to have a negligible effect on

future sea level. (The integral of the blue curve up to the present

corresponds to *3 cm of sea level.)
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a = 4.1 ± 0.5 mm/year/�C. With this, our temperature

curve gives a sea level rise of 77 ± 9 cm for 2000–2100.

Note that this estimate does not use any tide gauge data,

nor does it use quantitative results from the sea level

proxies—it only uses the qualitative finding of stable sea

level from 1400 to 1800. Yet the projected numbers are

consistent with those derived from the tide gauge data.

Some further tests illustrating the robustness of the

method (using only half of the tide gauge data, as well as

detrended data) were shown by (Rahmstorf 2007a).

10 Will the relationship hold in future?

Even though projections of future sea level rise with the

semi-empirical method give robust results with respect to

the choice of input data and analysis details, the question

remains how well the empirical link between temperature

and sea level found for the past will continue to hold in

future. Two caveats have been discussed already in

Rahmstorf (2007b) as well as in subsequent publications:

(i) loss of glaciers may mean that this source of meltwater

will be diminished in future, and (ii) a non-linear response

of ice sheets may arise which is not captured during the

calibration period of the method. The former might tend to

make semi-empirical projections an overestimate while the

latter would likely (but not necessarily) tend to make them

an underestimate of the true future sea level rise.

Regarding the question of glaciers running out of ice, it

has to be borne in mind that the empirical method does not

treat mountain glaciers separately from ice sheets but con-

siders all ice as a continuum. This continuum view is justified

if we consider the extent of continental ice (i.e., its surface

area, where melting may occur), as a function of annual air

temperature at the location of the ice (Fig. 13). As temper-

atures rise, ice is lost at the warm end of this continuum. But

as mountain glaciers dwindle, more and more ice of the big

ice sheets gets subject to melting, gradually shifting the

meltwater contribution from the small glaciers to the bigger

ice sheets as it gets warmer.

At a given global-mean temperature, there is a roughly

wedge-shaped (in the temperature vs. ice area graph)

amount of ice that is subject to melting (highlighted in red

in the graph). As the Earth and hence the temperature of the

ice surfaces warms, this ‘‘wedge’’ is pushed towards the

right into ever warmer temperatures. If we assume that

melting rates per square meter of ice surface increase lin-

early with temperature (according to the widely-used

‘‘positive degree days’’ concept), and if ice did not disap-

pear at the warm end of the wedge, integrated melting rates

would not go up linearly with temperature but rather qua-

dratically, as is readily derived. This is because both the

amount of ice subject to melting and the melting rate at a

given ice surface are increasing. On the other hand, if we

assume that glacier retreat at the warm end keeps pace with

warming, so that the tip of the wedge remains at the same

temperature and the wedge merely gets steeper as ice gets

pushed in from the left, the relation becomes linear again.

Thus, the linear assumption in the semi-empirical formulas

already accounts for glaciers retreating in step with
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warming. Hence, we do not expect that glacier loss would

cause first-order deviations from the semi-empirical

projections.

Regarding the two major ice sheets in Greenland and

Antarctica, (Rignot et al. 2011) found that the rate of sea level

rise from these two sources has been increasing approxi-

mately linearly from 1992 to 2010 while global temperature

has also been increasing linearly. Formally, this is consistent

with the semi-empirical projections, since the total sea level

rise in Eqs. 1, 2 can be split into components, each having

their own value of a, b and T0 denoted as ai, bi and T0,i for

each component i. The total rate of rise will in this case still

be of the form of Eqs. 1,2, with the sea level sensitivity

a = Rai, aT0 = RaiT0,i and b = Rbi. However, note that the

semi-empirical model only requires that the sum of sea level

rise follows Eq. 1 or 2, not that this necessarily applies to

each component separately.

By extrapolating the observed linear increase in mass loss

into the future, Rignot et al. estimated an ice sheet contri-

bution of 15 cm and a total sea level rise of 32 cm during

2010–2050, right on top of the best estimate of Vermeer and

Rahmstorf (2009) for the same period. Hence, at least until

2010 the observed ice sheet mass loss is fully consistent with

the semi-empirical projections and shows no sign of an

important non-linearity in its response to warming.

The semi-empirical approach could also reach its limits if

in the future the regional patterns of warming start to deviate

significantly from those seen in the past. IPCC projections to

a reasonable approximation show stable patterns which are

just scaled up in amplitude as the warming proceeds, but non-

linear phenomena (like a large change in thermohaline ocean

circulation) could cause deviations.

To summarize this section: whilst we cannot be certain

how well the semi-empirical approximation will continue to

hold up in the future, we feel it represents a reasonable first-

cut approximation. We also have no way of knowing at this

point whether the semi-empirical projections are more likely

to be an under- or an over-estimate of the true future sea level

rise. It is thus vital to strengthen ongoing efforts to observe,

physically understand and model ice sheet changes.

11 Conclusions

For the 1.8�C future global warming scenario considered

here (corresponding to the moderate RCP 4.5 emissions

scenario), a sea level rise over the period 2000–2100 of *1

meter is obtained. Only two factors lead to deviations from

this in excess of 20%:

• Disregarding the correction for water storage in artifi-

cial reservoirs lowers the projections by *25 cm.

However, we consider this an unphysical option.

Although the exact magnitude of the correction may

be debated, there is no question that it is a real effect

that must be accounted for. We have shown that the

effect of reservoir storage is by no means compensated

by the effect of groundwater pumping.

• Using the CW11 data lowers the projections by

*30 cm as compared to the other three data sets. We

find the results using the other three data sets more

plausible, due to the high agreement between them,

their better correlation to temperature data and the

better constraint of T0 from the longer data series.

Similar conclusions can be drawn from a test with a

scenario of greater warming and sea-level rise, where again

it is the issue of water storage and the CW11 data which

cause substantial deviations from otherwise consistent

projections.

Our preferred estimate is the one with the ‘default’

procedure based on the GISS temperature and CW06 sea-

level data, with a = 5.6 mm/year/�C, b = -66 mm/�C

and T0 = -0.43�C. This model version includes adjust-

ments both for the reservoir storage and the most recent

estimate of groundwater pumping, and it gives the best fit

over the calibration period. The CW06 data are preferred

over the CW11 data not only for their better fit but also in

view of the tight constraint on T0 provided by the proxy

data, which is consistent with the CW06 results but not

with the CW11 results. By coincidence, as the various

differences in the analysis compensate, this preferred

model is almost identical to the Vermeer and Rahmstorf

(2009) model.
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Fig. 13 Schematic histogram of synthermous continental ice sur-

faces, sorted by annual mean surface air temperature at the location of

the ice. Note that melting can start at -20 to -15�C annual

temperature, due to the daily and seasonal cycles and weather

variability. A triangular ‘‘wedge’’ of ice surfaces (red) protrudes from

about -15�C into warmer temperatures, which is not just made up of

glaciers but at the colder end of increasing amounts of ice from

Greenland and Antarctica. (Based on SeaRISE data provided by

R. Winkelmann and A. Robinson and glacier inventory data provided

by V. Radic (Radic and Hock 2010))
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Overall, we find that the semi-empirical method leads to

robust future projections of sea level rise, regardless of the

particular choices made in the analysis. However, since

there is no guarantee that empirical connections found for

the past continue to hold up in future, efforts to better

understand and model the physical mechanisms leading to

sea level rise are vital.
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