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The discussion leading toward Toxicity Testing in the 21st 
Century, prompted by the hallmark report by the US National 
Research Council (NRC, 2007), has raised expectations that  
modern high-content and high-throughput technologies might 
be able to bring about a revolution in regulatory toxicology  
(Hartung, 2008). Such expectations are nourished by top US 
agency representatives calling for change (Hamburg, 2011) and 
major funding programs for predictive in vitro systems (by NIH, 
FDA, DARPA and DTRA, totaling $ 200 million in 2011-2012 
alone). The technologies needed to make such a change happen 
appear to be largely at hand (van Vliet, 2011). Typically, they 
are used to phenotype substance effects (signatures of toxicity, 
SoT). Increasingly, attempts are made to link these to specific 
pathways of toxicity (PoT). Three major efforts are underway 
in the United States: First, the EPA’s ToxCast program1 and 
the Tox-21 alliance formed with other agencies has taken an 
approach based largely on “off the shelf” pathway assays for 
high-throughput testing. Increasingly, however, other informa-
tion sources are being included. Second, work undertaken at 
the Hamner Institute and propagated by the Human Toxicology 
Project Consortium addresses selected case study examples of 
PoT (Andersen et al., 2011). Third, the NIH-sponsored consor-
tium to map the Human Toxome, headed by CAAT but includ-
ing both Hamner and ToxCast in the consortium, has begun, in 
an unsupervised manner, to identify PoT starting from metabo-
lomics and transcriptomics (Hartung and McBride, 2011). 

These approaches are complementary and strongly overlap-
ping. They will shape the way we characterize substances of 
regulatory interest in the future. Primarily, they enable the de-
scription of a footprint that the substance has left in the bio-
logical system. The SoT will be a mix of causal PoT, pathways 
of defense (PoD) inevitably induced in parallel, epiphenomena 
(EpiP), and artifacts (Basketter et al., 2012). The data subse-
quently will be put in context through PoT identification (Jud-
son et al., 2012) and interpretation via a systems toxicology ap-
proach. 

It is important to define what is meant by “systems toxicology,” 
which borrows heavily from “systems biology,” i.e., attempts to 
model the (patho)physiology of the body with computational 
tools. It is proposed here that we will need such modeling, both 
to identify putative PoT (to enable their experimental valida-
tion) and, ultimately, to make sense of the data, as well as to 
make predictions about the effect of a substance in humans. 

1  Drivers for change

Toxicology testing is likely to witness a significant influx of new 
testing methodologies over the next few years, driven in part by 
ever increasing concerns regarding the impact of long-term ex-
posure to a wide range of chemical and biological substances, 
and in part by the need to gain a deeper understanding of the 
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1 http://epa.gov/ncct/toxcast/
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for which no adequate information exists on their toxicological 
properties. Toxicologists and regulators are still debating the 
expected costs and animal numbers required for the REACH 
program. The latest estimates show much higher costs and ver-
tebrate animal numbers than initially expected (assuming the 
current requirements are followed), leading to concerns about 
the feasibility and ethics of such a large amount of in vivo toxic-
ity testing (Rovida and Hartung, 2009). It is clear that the tra-
ditional approach does not accomodate the broad old and new 
testing needs. In order to reduce time, costs, and animal num-
bers, REACH foresees increased use of in vitro and in silico 
testing methods. However, such methods have been accepted 
only for the less demanding acute and topical toxicities, which 
represent a very small portion of test needs. It is clear that sim-
ple in vitro test systems or in silico approaches will not be able 
to reflect the complexity of the organism and its derangement 
by substances. The answers to this dilemma currently are ad-
dressed by three approaches:
1)	Reflect the complexity of the organism in the in vitro test 

system, i.e., the current attempts to create a “human on a 
chip” with a number of 3-dimensional organotypic organ 
models combined with microfluidics, as promoted most re-
cently through large scale funding programs in the United 
States (more than $ 200 million available from NIH, FDA, 
DARPA, and DTRA). 

2)	Develop combinations of information sources in integrated 
testing strategies (ITS) that together map the hazard of inter-
est. Here, the complementary nature of information sources 
and their integration represent a challenge. A notable exam-
ple is the test battery developed in the European Commis-
sion Framework 7 funded Integrated Project, ReProTect, 
which showed promising early feasibility (Schenk et al., 
2010). While the combination of tests here was still very 
simple, pioneering work shows the potential of data integra-
tion, e.g., by Bayesian networks (Jaworska and Hoffmann, 
2010, Jaworska et al., 2011). The components of ITS typi-
cally are on the level of complex cellular functions assessed 
by relatively crude endpoints. This does not exclude the use 
of PoT-based assays, but an approach based solely on PoT 
information, as discussed here, moves the challenge to an-
other level that likely will require increasingly specific ways 
of interrogating the biological systems’ response to pre-de-
fined substances.

3)	Molecularly defined PoT for mapping the Human Toxome, 
thus transforming assays from black boxes of complex end-
points to defined PoT.

There is a continuum between approaches (2) and (3): PoT-based 
assays can contribute to ITS and pure PoT-based systems will 
require integration. The distinction aimed for is that, in its cur-
rent state, ITS typically uses the resolution of a mode of action, 
informed by cell physiology or affected cell function rather than 
molecularly defined PoT. The unclear terminology of “mode of 
action,” “mechanism of toxicity,” “molecular toxicology,” “ad-
verse outcome pathway,” “pathway of toxicity,” etc. contributes 
to such confusion. It is suggested that the term PoT should be 
reserved for “molecularly defined descriptors of pathways of 
substance interference with biological systems.”

mechanisms by which these substances lead to toxicity (Hartung 
2009ab, 2010, 2011). It is worth noting that a recent consensus 
workshop (Basketter et al., 2012) placed PoT-based approaches, 
together with integrated testing strategies, in the foreground of 
a roadmap for future systemic toxicity assessments. 

Traditional in vivo tests and in vitro assays typically provide 
only limited mechanistic information, while new comprehen-
sive screening studies are underway that aim to reveal the in-
teractions of chemicals with biochemical pathways that control 
cell function, communication, and adaptation to environmental 
changes. They are based on a broad biological (initially) phe-
notypic profiling by either omics or high throughput screening 
(HTS) technologies. The latter requires large batteries of tests 
to characterize an individual substance, as each and every one 
reflects only a limited amount of information regarding biologi-
cal characteristics. Therefore, as a tool to profile substances, 
HTS is either restricted to larger screening programs such as 
ToxCast or Tox-21 or to providing a comparison to a set of sub-
stances that manifest a property earlier identified as predictive. 
It is evident that chemicals can interact with these pathways, 
thereby altering their normal functions leading to toxicity and 
disease. The fundamental question, however, is whether the 
ability to analyze interactions at the pathway level can enable 
the prediction of adverse outcomes at the organism level. This 
will require first identifying which PoT are “involved” and then 
separating these from the noise of physiological variation and 
other (parallel and secondary) cellular responses to the sub-
stance studied. This raises the possibility of a qualitative haz-
ard identification, whereby the analysis of the dose-response 
characteristics of the perturbations of these pathways, together 
with in vitro-to-in vivo extrapolation of the pharmacokinetics 
(Wetmore et al., 2011), could ultimately provide the basis for a 
so called “pathway-based hazard assessment.” 

The National Academy of Sciences publication, Toxicity 
Testing in the 21st Century: A Vision and a Strategy (NRC, 
2007), proposes a paradigm shift in toxicology from current 
animal-based testing towards the application of emerging 
technologies, including genomic, metabolomic, and proteomic 
approaches, as well as systems biology. This new paradigm 
would provide greater mechanistic insight into the ways in 
which many compounds, including pharmaceuticals, affect hu-
man health – an approach that has been advocated by many in 
the field for some time (Goldberg, 1983; Balls, 1998; Hartung, 
2001; Coecke et al., 2007).

Public concern for risks associated with many consumer 
products is accelerating the adoption of new regulations that 
increasingly require new methods of testing. Demand for toxi-
cological information on chemicals now exceeds the ability to 
produce relevant data based on the current regulatory animal 
tests. At present, there are about 80,000 chemicals on the mar-
ket, and each year about 2,000 new chemicals are introduced, 
for which there is limited or no adequate toxicological infor-
mation (US EPA, 1998a,b; Bakand et al., 2005; Grandjean 
and Landrigan, 2006; Rand, 2010). In the European Union, 
REACH (registration, evaluation, authorization, and restric-
tion of chemicals) legislation (EC, 2006) aims to test 30,000 
chemicals produced in quantities of more than one ton per year, 
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anistic view of chemically induced bioactivity (Evans, 2000; 
Aardema and MacGregor, 2002; Craig et al., 2006; Parman et 
al., 2011). For instance, both medium- and high-throughput ge-
nomics, proteomics, and metabolomics measurements have been 
applied to identify and to understand molecular and biochemical 
pathways that control homeostasis (Heijne et al., 2005). It ap-
pears that either the early changes in response to a substance or 
the new homeostasis established after compensation for this in-
teraction qualifies for analysis, while the dynamics of adapting 
to exposure require a high level of resolution and an even great-
er number of processes to dissect. Figure 1 shows an adaption of 
a classical figure by Hans Seyle2 (Seyle, 1956), who introduced 
the concept that a system under stress aims to establish a new 
homeostasis until exhausted. Translating this to a biological 
system stressed by exposure to chemicals, we see the chemico-
biological interaction engaging PoT. Then, by PoD and other 
mechanisms (EpiP), a new homeostasis is established, with a 
deranged physiology. This holds true especially for high dose 
effects, where many derangements are to be expected. Note that 
this is the opposite of the high-dose/concentration approaches 
typical in toxicology, but it is likely to be far more relevant to 
the low-dose exposures of real life. The hypothesis is put for-
ward that initial perturbations, when passing the no-effect levels 
by increasing concentrations of substances, will reflect the key 
PoT. However, it is possible that even lower concentrations are 
of interest, as effects might just be hidden by the compensa-
tory capacity of the cell (PoD), while the PoT may already be at 
work. It will need to be shown whether sub-adversity levels of 

Note that, while we are addressing mainly PoT here, i.e., 
the molecular mechanisms of hazard manifestation, other as-
pects such as toxicokinetics (Basketter et al., 2012), exposure, 
etc. (Wetmore et al., 2012) need to be integrated in order to 
make them useful for risk assessment. However, this might not 
hold true where hazard can be excluded (or made sufficiently 
unlikely). As discussed earlier, (Hartung 2010b, Hartung and 
McBride, 2011) the beauty of a molecularly defined approach 
is that the perturbation of crucial PoT might be excluded, 
omitting any further assessment of the given hazard. This is 
in strong contrast to current practice, where an arbitrary effect 
level is established in high-dose experiments to apply safety 
factors and define use conditions. It should be clear that such 
practice leaves the impression that all chemicals are dangerous 
and that only restricted exposure keeps us safe. This impres-
sion, in turn, results in the well known chemophobia of the 
general public.

2  An integrated post-genomic approach  
to pathways of toxicity

Sequencing of the genome, annotation of genes, and gene chip 
developments, especially for transcriptomics, clearly have been 
the starting point for elucidation of toxic effects. Multi-omics 
research, including data integration and modeling, using both 
in vivo and cell-based assays, is beginning to gain traction as a 
viable approach in the development of a pathways-based mech-

Fig. 1: System under stress aims to establish a new homeostasis until exhausted (Seyle, 1956)

2 We would like to thank Dr Drew Ekman, EPA, for bringing this to our attention. 
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capability to survey the entire transcriptome, thus providing a 
global evaluation of cellular changes. The technology also has 
become more reliable and reproducible. Small changes in gene 
expression now can be reliably detected (Shippy et al., 2006), 
and extensive validation studies performed by the MicroAr-
ray Quality Control (MAQC) project demonstrated consistent 
results across multiple platforms and research sites (Shi et al., 
2006). Under the label of toxicogenomics, new approaches in-
creasingly are suggested for regulatory use concerning both 
health (MacGregor, 2003; Waters and Fostel, 2004; Boverhof 
and Zacharewski, 2005) and environmental effects (Ankley et 
al., 2006). 

For systems toxicology applications, transcriptomic meas-
ures typically are performed across both dose and time. The 
dose-response characteristics are important for inferring dose-
dependent transitions in what pathways are perturbed, while 
the time course measurements provide a better understanding 
of the pathways involved in the temporal transitions from the 
molecular initiating event to secondary and tertiary responses 
(Andersen et al., 2010). For chemicals or their metabolites that 
interact weakly with cellular macromolecules, multiple path-
ways may initially be perturbed, leading to a broader activation 
of pathways involved in the stress response, cell death by ap-

exposure qualify for PoT dissection. Certainly, when measuring 
at the new plateau established under stress homeostasis, it will 
be easier to determine the derangement of physiology but more 
difficult to deduce the underlying PoT. 

Bioinformatics enables visualization of these pathways, as 
well as modeling of the system’s behavior in response to, for ex-
ample, chemical exposure. The lack of availability of adequate 
bioinformatics tools is a current bottleneck to fully integrating 
this information, especially from different platform technolo-
gies. However, new open source webtools (GeneNetwork3), as 
well as commercial solutions (Figure 2) for multi-omics data 
integration, are now becoming available and should facilitate 
the elucidation of pathways of toxicity. 

A closer look into the different omics technologies as data-
sources for systems toxicology is warranted (for more details 
see (van Vliet, 2011)).

3  Transcriptomics

Gene expression can rapidly change in response to chemical 
exposure, thereby providing a sensitive endpoint for toxicity. In 
addition, advances in microarray technology now include the 

3 www.genenetwork.org/webqtl/main.py 

Fig. 2: Screen capture of the GeneSpring-Integrated Biology software platform (Agilent Technologies, Santa Clara, CA) 
showing the results of co-analysis of differential gene expression and metabolomics data
GeneSpring-IB is configurable for various multi-omics data analysis combinations. It imports raw data, performs a variety of statistical 
analyses, conducts pathway analyses, integration, and visualization.
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optosis or necrosis, inflammation, and tissue remodeling. For 
chemicals that interact with higher affinity to a single cellular 
macromolecule, a single pathway would be perturbed initially, 
followed by downstream activation of secondary and tertiary 
pathways that underlie the adverse response. In either case, a 
systems-level analysis provides an understanding of the key 
events in the mode-of-action that ultimately leads to toxicity. 
Transcriptomic studies often are complemented by proteomic 
and metabolomic approaches in order to functionally validate 
the observed changes in the transcriptome. 

4  Proteomics

Proteomics studies in the field of toxicology have focused 
mainly on identifying biomarkers and refining a mechanistic 
understanding of molecular mechanisms of toxicity (Kennedy, 
2002). The pharmaceutical industry has performed a large 
number of studies to identify biomarkers for liver and kidney 
toxicity (Wetmore and Merrick, 2004). Protein profiling in hu-
man blood and urine samples is particularly promising for the 
prediction of human toxicity (Thongboonkerd, 2008). Current-
ly, the human blood plasma proteome is being mapped to gain 
more insight into disease and toxicity (Omenn et al., 2009). 
Proteomics analysis is increasingly applied in vitro, including 
applications based on stem cells (van Hoof et al., 2008), em-
bryotoxicity in embryonic stem cells (Osman et al., 2010), and 
mechanisms of toxicity in primary cell cultures (Vendrell et 
al., 2010). 

In vitro proteomics is proving to be a valuable method of 
identifying protein biomarkers for mechanisms of toxicity 
(e.g., oxidative stress, cell death, or energy metabolism). Pro-
teomics is still less standardized than transcriptomics or me-
tabolomics, however, and thus is more difficult to apply for 
PoT identification. The sensitivity of proteomics methods for 
identification of single proteins is lower than immunohisto-
chemistry, enzyme-linked immunosorbent assay (ELISA) or 
Western blotting (Heijne et al., 2005). However, in contrast 
to those methods, proteomics allows the detection of changes 
in unexpected and unknown proteins – and often subsequent 
identification with mass spectrometry (MS). Typically, only 
water-soluble proteins within a specified mass and isoelectric 
point range will be analyzed.

5  Metabolomics

The number of metabolites in a biological system is estimated 
to be a few thousand, which is relatively small compared to 
the number of genes and proteins. Metabolomics, therefore, is 
considered a more approachable methodology than proteom-
ics, particularly in translating results to phenotypic changes. 
Furthermore, as metabolic changes represent the final outcome 
of all physiological processes, metabolomics is a relevant ap-
proach to study toxicity (Robertson, 2005; Keun, 2006; van 
Vliet et al., 2008). At the same time, while transcriptomics and 

proteomics only indicate possible derangements of physiol-
ogy, a shift in metabolites indicates actual change in physi-
ologic chemistry. 

The principal technologies for metabolomics studies are nu-
clear magnetic resonance spectroscopy (NMR) and MS. NMR 
examines the proton spectrum of a sample, which represents 
a robust and quantitative measurement. Advantages of NMR 
are that it is non-invasive, requires no metabolite extraction 
procedure, and allows a relatively easy structural identification 
of metabolites. MS-based applications have increased over 
the last years, primarily due to the high sensitivity, specificity, 
and ability to detect and identify large numbers of metabolites 
(Dettmer et al., 2007). 

In the case of MS, signals are characterized by mass, time 
of flight (TOF), and, if coupled with chromatography, a re-
tention time. The first step is to break these “features” down 
into (identified) metabolites. To confirm the identities of me-
tabolites relevant to a specific toxic perturbation, their accu-
rate mass, retention time parameters, or NMR spectra can be 
compared to a database with annotated metabolites, such as 
METLIN (Smith et al., 2005), that contains thousands of me-
tabolites. Identities of metabolites not annotated in a database 
can be confirmed by MS-MS fragmentation. Since this is quite 
laborious for metabolites not yet annotated in a database, it is 
useful to restrict the analysis to metabolites of relevance to the 
biological effect. This can be done, for example, by principal 
component analysis (PCA), identifying the most interesting 
signals correlated with the biological effects of interest. This 
means that signals correlating with treatment, concentrations 
used or responses developed over time, are used. At this stage, 
these principal components can be used to form a signature 
of toxicity (SoT), even without identification of the substance. 
The metabolites of interest then can be detected and their con-
centrations accurately quantified in future experiments. The 
metabolite signals representing their concentrations can be 
used to identify biomarkers and metabolic pathways, or to de-
velop systems biology models (Lanza et al., 2010). 

Statistical data analysis compares the different spectra to 
find significant differences in metabolite patterns and intensi-
ties, revealing clustering patterns that show differences or sim-
ilarities between samples. Identification of the metabolites re-
sponsible for the clustering can provide metabolic fingerprints 
(SoT) useful in classifying compounds into toxicity classes or 
acting as biomarkers of toxicity. The latest software packages 
control the complete metabolomics process, including data de-
tection, normalization, statistical analysis, metabolite identifi-
cation, database search, and pathway identification. 

Metabolomics toxicity studies have been performed both in 
vivo and in vitro. For example, an LC-MS based footprinting 
approach was used to investigate Valproate toxicity in human 
embryonic stem cells (Cezar et al., 2007). Using the same 
footprinting approach, several teratogens were tested in hu-
man embryonic stem cells (hES) to identify biomarkers for 
developmental toxicity and generate a preliminary prediction 
model (West et al., 2010). Metabolomics applications in cell 
cultures have been initiated only recently, and much is ex-
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namics – topology does not fully describe network behavior. 
Studies of the effects of structure on system behavior are still 
in their infancy. It remains to be seen what the crucial theoreti-
cal developments will be in this area. Progress on this front has 
been slower than progress in understanding network structure, 
perhaps because without a thorough understanding of struc-
ture an understanding of the effects of that structure is hard to 
come by. However, some important advances have been made 
(Milenkovic and Przulj, 2008).

Biological systems are networked at many levels: hormone 
regulations, signaling cascades, gene regulation by transcrip-
tion factors or microRNA, for example. Increasingly, these 
systems can be modeled dynamically, though often in isola-
tion – and they are difficult to combine. Fortunately, this chal-
lenge has been taken up by a broad scientific community in 
the life sciences, and toxicology can profit from many parallel 
or pioneering developments. This offers hope that solutions 
to understanding the interplay of network structure, function, 
and dynamics will emerge rapidly. Ultimately, virtual cells and 
organs need to be set up to integrate these networks, their in-
teractions, and, for toxicology, their perturbation by exogenous 
substances (e.g., the German Virtual Liver Network4 or similar 
activities for liver5 and the virtual embryo6 at US FDA). Such 
systems increasingly allow simulations and virtual experi-
ments to be carried out. We have learned that such biological 
networks typically have critical nodes, which largely reflect 
the derangement of the network. Often these are the crossings 
of different pathways, which may enable the simplification of 
some of the models.

Systems toxicology, with its new datasets and large scale 
data integration, will enable the exploration of properties of 
biological systems beyond what is currently possible. It will 
provide the prospects of investigating natural variation and 
stochastic effects and their role in defining phenotypes and the 
transitions between them. Harvard is conducting interesting re-
search on how variation in gene expression patterns influences 
the development of disease states, arguing that one should 
move beyond a simple comparison of the means relative to 
variance (the t-test) to also considering how variance itself 
changes between phenotypes7. The study of inter-individual 
variability was recognized as a tremendous opportunity to 
resolve some questions regarding structure-function relation-
ships in the endocrine systems and the functional significance 
of absolute versus relative changes (William, 2008).

To deliver on this potential, systems toxicology will need 
tools. There is an urgent need for novel tools for navigating, 
filtering, aggregating, visualizing, and assessing research con-
tent. In taking inspiration from systems biology, we grow more 
and more appreciative of collaborative, open source tools to 
accelerate interoperability and to leverage resources available 
to scientists. Recently, the Opentox computational toxicol-
ogy platform has been interfaced with Bioclipse. The integra-

pected from this approach, especially applications in human 
stem cells. These are seen as highly promising, as they could 
provide insight into human toxicity pathways (Kleinstreuer et 
al., 2011). 

6  Systems biology and toxicology

The underlying structure of systems biology and toxicology is 
a network.

The move towards systems toxicology and massively paral-
lel techniques opens new opportunities but, at the same time, 
raises problems in deriving meaningful information out of the 
wealth of generated data. Such data is increasingly represented 
as networks, in which the vertices (e.g., transcripts, proteins, or 
metabolites) are linked by edges (correlations, interactions, or 
reactions, respectively). Networks can vary in their function-
alities. Some are undirected graphs that enable only the study 
of structure; others, like the biochemical network, are charac-
terized by interactions of varying strengths, strongly nonlinear 
dynamics, and saturating response to inputs (Wagner, 1996).

Network analysis has evolved into a very active and inter-
disciplinary area of research encompassing biology, compu-
ter science, social and information sciences. Many studies are 
highly theoretical, but they may eventually help in identifying 
SoT and PoT. The network research has three primary goals. 
First, it aims to understand statistical properties that character-
ize the network structure in order to suggest appropriate ways 
to measure these properties. This is very relevant to SoT iden-
tification. Second, it aims to create models of networks that 
can help us understand the meaning of these properties and 
how they interact with one another. Third, it aims to predict 
what the behavior of networked systems will be on the basis 
of measured structural properties. This direction can be very 
useful in elucidating PoT.

Structural analysis of networks has already led to new in-
sights into biological systems, and it is a helpful method for 
proposing new hypotheses. Several techniques for such struc-
tural analysis exist, such as the analysis of the global network 
structure, e.g., scale-free networks, network motifs (i.e., small 
sub-networks that occur significantly more often in the bio-
logical network than in random networks), network clustering 
(modularization of the network into parts) and network cen-
tralities. Network centralities are used to rank elements of a 
network according to a given importance concept (Koschutzki 
and Schreiber, 2008). The resilience of networks to the removal 
of their vertices is another important structural property. This 
has been the subject of a good deal of attention in the literature 
because it is regarded as a very promising method to link net-
work structure to function (Rodrigues et al., 2011).

While the topology of biochemical networks is informative 
– for example, feedback loops are necessary for oscillatory dy-

4 http://www.virtual-liver.de/
5 http://epa.gov/ncct/virtual_liver/
6 http://epa.gov/ncct/v-Embryo/
7 http://www.iq.harvard.edu/blog/sss/archives/2012/01/
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h)	The multitude of parameters and conditions creates prob-
lems of multiple testing, over-fitting, noise/signal ratios.

And this is only to model the physiological process. It does 
not yet include the interference of substances. The opportunity 
lies in using the measurement endpoints as input parameters 
for the systems biology model and simulating the effect on the 
dynamics of the system. Ideally, this includes points of interac-
tion with the foreign substance and effect data on nodes in the 
networks.

Figure 3 depicts the larger perspective of moving from em-
pirical approaches, which have given us the substances found 
to be problematic (reference substances) and the test systems 
to identify them, to a fully fledged mechanistic approach, as 
suggested in the vision of Toxicity Testing for the 21st Century. 
Because they have proven to predict a relevant number of ref-
erence substances, these predictive tests qualify for inclusion 
into ITS, which, for many reasons detailed elsewhere (Bas-
ketter et al., 2012), lend themselves to a probabilistic based 
condensation of information. Omics technologies offer a prime 
opportunity to refine existing tests and to provide information 
for ITS via the creation of SoT. The empiric character of SoT 
is evident. The vision put forward is that, by identifying the 
underlying PoT, this can be moved to a mechanistic level. 
Some mechanisms of toxicity (modes of action) have been 
identified in toxicology from the predictive tests (in vivo or in 
vitro) over the last decades. They will add to the array of PoT 
and confirm those identified in an unsupervised manner from 
SoT of omics technologies. Additional pathway information 

tion takes advantage of semantic web technologies, thereby 
providing an open and simplified communication standard.  
Additionally, the use of ontologies (see also the contributions 
by Hardy et al. in this issue of ALTEX) ensures proper inter-
operation and reliable integration of toxicity information from 
both experimental and computational sources (Willighagen et 
al., 2011).

A number of challenges in modeling biological networks 
remain:
a)	 Few measurements are continuous, but we need dynamic/

kinetic modeling; we have only snapshots of the dynamic 
system, which we need to combine with knowledge on (re-
action) kinetics.

b)	Each of these networks has its own set of technologies to 
monitor them, and they are not necessarily compatible to 
measure in the same sample at the same time.

c)	 Many systems are not completely known or measurable 
(only some network members can be followed).

d)	Many biological systems have a spatial (e.g., compartmen-
talization) or temporal (e.g., sequence and timing of events) 
aspect.

e)	 Developmental aspects (establishment, maturation, (de-)
differentiation, aging, etc.) take place in the models or rep-
resent measures of interest.

f)	 Many relevant physiological processes involve interactions 
of different cell types or tissues, adding layers of complex-
ity to the modeling.

g)	Inter-individual differences affect data acquisition.

Fig. 3: Move from empirical to mechanistic approach in toxicity testing
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scriptomics, proteomics and metabolomics in toxicology. Ex-
pert Rev. Proteomics 2, 767-780.

Heinloth, A. N., Irwin, R. D., Boorman, G. A., et al. (2004). 

comes from biochemistry and molecular biology. Together, 
these shall form the basis for systems toxicology, which by 
virtual experiments (simulation) can undergo reality checks, 
thus moving toward prediction of hazard. Last but not least, 
the components of quantitative in vitro to in vivo extrapola-
tion (QIVIVE) and exposure move us to the risk paradigm that 
ultimately is required. 

Systems toxicology is an exciting new prospect on which to 
base our studies on information-rich methods and bioinformat-
ics, which reflect the dynamics and complexity of physiology. 
The fact that we have our “disease agent,” i.e., the toxicant, at 
hand and can induce derangement by varying timing, condi-
tions, concentrations, etc. as often as we want, distinguishes 
systems toxicology from similar approaches for clinical prob-
lems. The question arises: How can such a systems toxicology 
approach be quality controlled and validated? Again, toxicolo-
gy is more advanced than other medical fields here, with expe-
rience in such quality assurance schemes as Good Laboratory 
Practice (GLP) and formal validation. Toxicology, therefore, 
should not wait as a bystander to embrace the systems biol-
ogy developed in other scientific disciplines but should instead 
bring its specific opportunities and experiences to the table. 
This promises, in return, to advance toxicology to a true reflec-
tion of human toxicity.
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